Trigonometric Ratios & Identities · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1

$$ \tan ^2 \frac{\pi}{16}+\tan ^2 \frac{2 \pi}{16}+\tan ^2 \frac{3 \pi}{16}+\tan ^2 \frac{4 \pi}{16} $$

$+\tan ^2 \frac{5 \pi}{16}+\tan ^2 \frac{6 \pi}{16}+\tan ^2 \frac{7 \pi}{16}$ is equal to

AP EAPCET 2024 - 23th May Morning Shift
2

$$ \begin{aligned} & \sin ^2 18^{\circ}+\sin ^2 24^{\circ}+\sin ^2 36^{\circ}+\sin ^2 42^{\circ}+\sin ^2 78^{\circ} \\ & +\sin ^2 90^{\circ}+\sin ^2 96^{\circ}+\sin ^2 102^{\circ}+\sin ^2 138^{\circ}+\sin ^2 162^{\circ} \text { is } \\ & \text { equal to } \end{aligned} $$

AP EAPCET 2024 - 23th May Morning Shift
3
If $A B$ and $C$ are the angles of a triangle, then $\frac{\sin A+\sin B+\sin C}{\sin ^2 \frac{A}{2}-\sin ^2 \frac{B}{2}+\sin ^2 \frac{C}{2}-1}$ is equal to
AP EAPCET 2024 - 23th May Morning Shift
4
If $\cos \alpha+4 \cos \beta+9 \cos \gamma=0$ and $\sin \alpha+4 \sin \beta+9 \sin \gamma=0$, then 81 $\cos (2 \gamma-2 \alpha)-16 \cos (2 \beta-2 \alpha)$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
5
$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
6
$\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
7
$\cos 6^{\circ} \sin 24^{\circ} \cos 72^{\circ}$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
8

If $\sinh x=\frac{\sqrt{21}}{2}$, then $\cosh 2 x+\sinh 2 x$ is equal to

AP EAPCET 2024 - 22th May Evening Shift
9

If $M_1$ and $M_2$ are the maximum values of $\frac{1}{11 \cos 2 x+60 \sin 2 x+69}$ and $3 \cos ^2 5 x+4 \sin ^2 5 x$ respectively, then $\frac{M_1}{M_2}=$

AP EAPCET 2024 - 22th May Morning Shift
10

$$ 4 \cos \frac{\pi}{7} \cos \frac{\pi}{5} \cos \frac{2 \pi}{7} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{7}= $$

AP EAPCET 2024 - 22th May Morning Shift
11
If $\tanh x=\operatorname{sech} y=\frac{3}{5}$ and $e^{x+y}$ is an integer, then $e^{x+ y}$ =
AP EAPCET 2024 - 22th May Morning Shift
12
If $A, B, C$ are the angles of triangle, then $\sin 2 A-\sin 2 B+\sin 2 C=$
AP EAPCET 2024 - 21th May Evening Shift
13

Assertion (A) : If $A=10^{\circ}, B=16^{\circ}$ and $C=19^{\circ}$, then $\tan 2 A \tan 2 B+\tan 2 B \tan 2 C+\tan 2 C \tan 2 A=1$

Reason (R) : If $A+B+C=180^{\circ}, \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$

$$ =\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2} $$

Which of the following is correct ?

AP EAPCET 2024 - 21th May Evening Shift
14
If $\alpha$ is in the 3rd quadrant, $\beta$ is in the 2nd quadrant such that $\tan \alpha=\frac{1}{7}, \sin \beta=\frac{1}{\sqrt{10}}$, then $\sin (2 \alpha+\beta)=$
AP EAPCET 2024 - 21th May Evening Shift
15
If the period of the function $f(x)=\frac{\tan 5 x \cos 3 x}{\sin 6 x}$ is $\alpha$, then $f\left(\frac{\alpha}{8}\right)=$
AP EAPCET 2024 - 21th May Morning Shift
16
If $\sin x+\sin y=\alpha, \cos x+\cos y+\beta$, then $\operatorname{cosec}(x+y)=$
AP EAPCET 2024 - 21th May Morning Shift
17
If $P+Q+P=\frac{\pi}{4}$, then $\cos \left(\frac{\pi}{8}-P\right)+\cos \left(\frac{\pi}{8}-Q\right)+\cos$ $\left(\frac{\pi}{8}-R\right)=$
AP EAPCET 2024 - 21th May Morning Shift
18
If $\theta$ is an acute angle, $\cosh x=K$ and $\sinh x=\tan \theta$, then $\sin \theta=$
AP EAPCET 2024 - 21th May Morning Shift
19
If $\sec \theta+\tan \theta=\frac{1}{3}$, then the quadrant in which $2 \theta$ lies is
AP EAPCET 2024 - 20th May Evening Shift
20
If $540^{\circ} < A < 630^{\circ}$ and $|\cos A|=\frac{5}{13}$, then $\tan \frac{A}{2} \tan A=$
AP EAPCET 2024 - 20th May Evening Shift
21
If $(\alpha+\beta)$ is not a multiple of $\frac{\pi}{2}$ and $3 \sin (\alpha-\beta)=5 \cos (\alpha+\beta)$, then $\tan \left(\frac{\pi}{4}+\alpha\right)+4 \tan \left(\frac{\pi}{4}+\beta\right)=$
AP EAPCET 2024 - 20th May Evening Shift
22
If $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, then $\left(\cos ^3 \alpha+\cos ^3 \beta+\cos ^3 \gamma\right)^2+\left(\sin ^3 \alpha+\sin ^3 \beta+\sin ^3 \gamma\right)^2=$
AP EAPCET 2024 - 20th May Morning Shift
23
$$ \text { } \frac{\cos 10^{\circ}+\cos 80^{\circ}}{\sin 80^{\circ}-\sin 10^{\circ}}= $$
AP EAPCET 2024 - 20th May Morning Shift
24
$\frac{\sin 1^{\circ}+\sin 2^{\circ}+\ldots . . .+\sin 89^{\circ}}{2\left(\cos 1^{\circ}+\cos 2^{\circ}+\ldots+\cos 44^{\circ}\right)+1}=$
AP EAPCET 2024 - 20th May Morning Shift
25
The value of $5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ lies between
AP EAPCET 2024 - 19th May Evening Shift
26

Statement $(\mathrm{S} 1) \sin 55^{\circ}+\sin 53^{\circ}-\sin 19^{\circ}-\sin 17^{\circ}=\cos 2^{\circ}$

Statement (S2) Range of $\frac{1}{3-\cos 2 x}$ is $\left[\frac{1}{4}, \frac{1}{2}\right]$

Which one of the following is correct?

AP EAPCET 2024 - 19th May Evening Shift
27
$ \tan 6^\circ + \tan 42^\circ + \tan 66^\circ + \tan 78^\circ = $
AP EAPCET 2024 - 18th May Morning Shift
28
The maximum value of $12\sin x - 5\cos x + 3$ is
AP EAPCET 2024 - 18th May Morning Shift
29
$\sin^2 16^\circ - \sin^2 76^\circ = $
AP EAPCET 2024 - 18th May Morning Shift
30
By considering $1^{\prime}=0.0175$, he approximate value of $\cot 45^{\circ} 2^{\prime}$ is
AP EAPCET 2024 - 18th May Morning Shift
31

If $$\sin ^4 \theta \cos ^2 \theta=\sum_\limits{n=0}^{\infty} a_{2 n} \cos 2 n \theta$$, then the least $$n$$ for which $$a_{2 n}=0$$ is

AP EAPCET 2022 - 5th July Morning Shift
32

If $$\sin \theta=-\frac{3}{4}$$, then $$\sin 2 \theta=$$

AP EAPCET 2022 - 5th July Morning Shift
33

$$\begin{aligned} & \frac{1}{\sin 1^{\circ} \sin 2^{\circ}}+\frac{1}{\sin 2^{\circ} \sin 3^{\circ}}+\ldots +\frac{1}{\sin 89^{\circ}+\sin 90^{\circ}}= \end{aligned}$$

AP EAPCET 2022 - 5th July Morning Shift
34

Which of the following trigonometric values are negative?

I. $$\sin \left(-292^{\circ}\right)$$

II. $$\tan \left(-190^{\circ}\right)$$

III. $$\cos \left(-207^{\circ}\right)$$

IV. $$\cot \left(-222^{\circ}\right)$$

AP EAPCET 2022 - 5th July Morning Shift
35

$$\sin ^2 \frac{2 \pi}{3}+\cos ^2 \frac{5 \pi}{6}-\tan ^2 \frac{3 \pi}{4}=$$

AP EAPCET 2022 - 5th July Morning Shift
36

A true statement among the following identities is

AP EAPCET 2022 - 4th July Evening Shift
37

If $$A+B+C=\pi, \cos B=\cos A \cos C$$, then $$\tan A \tan C=$$

AP EAPCET 2022 - 4th July Evening Shift
38

The value of $$\tan \left(\frac{7 \pi}{8}\right)$$ is

AP EAPCET 2022 - 4th July Evening Shift
39

$$1+\sec ^2 x \sin ^2 x=$$

AP EAPCET 2022 - 4th July Evening Shift
40

If the identity $$\cos ^4 \theta=a \cos 4 \theta+b \cos 2 \theta+c$$ holds for some $$a, b, c \in Q$$ then $$(a, b, c)=$$

AP EAPCET 2022 - 4th July Morning Shift
41

The value of $$\frac{\sin \theta+\sin 3 \theta}{\cos \theta+\cos 3 \theta}$$ is

AP EAPCET 2022 - 4th July Morning Shift
42

If $$(1+\tan 1^{\circ})(1+\tan 2^{\circ}) \ldots(1+\tan 45^{\circ})=2^n,$$ then $$n=$$

AP EAPCET 2022 - 4th July Morning Shift
43

$$\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=$$

AP EAPCET 2022 - 4th July Morning Shift
44

If $$\operatorname{cosech} x=\frac{4}{5}$$, then $$\sinh x=$$

AP EAPCET 2022 - 4th July Morning Shift
45

What is the value of $$\cos \left(22 \frac{1}{2}\right)^{\circ}$$ ?

AP EAPCET 2021 - 20th August Morning Shift
46

If $$\cos \theta=-\sqrt{\frac{3}{2}}$$ and $$\sin \alpha=\frac{-3}{5}$$, where '$$\theta$$' does not lie in the third quadrant, then the value of $$\frac{2 \tan \alpha+\sqrt{3} \tan \theta}{\cot ^2 \theta+\cos \alpha}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
47

If $$\tan \beta=\frac{\tan \alpha+\tan \gamma}{1+\tan \alpha \tan \gamma}$$, then $$\frac{\sin 2 \alpha+\sin 2 \gamma}{1+\sin 2 \alpha \sin 2 \gamma}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
48

The sides of a triangle inscribed in a given circle subtend angles $$\alpha, \beta, \gamma$$ at the center. The minimum value of the AM of $$\cos \left(\alpha+\frac{\pi}{2}\right), \cos \left(\beta+\frac{\pi}{2}\right)$$ and $$\cos \left(\gamma+\frac{\pi}{2}\right)$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
49

In a $$\triangle A B C$$, if $$3 \sin A+4 \cos B=6$$ and $$4 \sin B+3 \cos A=1$$, then $$\sin (A+B)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
50

$$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
51

If $$f(x)=\frac{\cot x}{1+\cot x}$$ and $$\alpha+\beta=\frac{5 \pi}{4}$$, then the value of $$f(\alpha) f(\beta)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
52

In $$\triangle A B C \cdot \frac{a+b+c}{B C+A B}+\frac{a+b+c}{A C+A B}=3$$, then $$\tan \frac{C}{8}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
53

Mean of the values $$\sin ^2 10 Y, \sin ^2 20 Y, \sin ^2 30 Y, \ldots \ldots \ldots ., \sin ^2 90 Y$$ is

AP EAPCET 2021 - 19th August Evening Shift
54

When the coordinate axes are rotated through an angle 135$$\Upsilon$$, the coordinates of a point $$P$$ in the new system are known to be $$(4,-3)$$. Then find the coordinates of $$P$$ in the original system.

AP EAPCET 2021 - 19th August Evening Shift
55

The maximum value of $$f(x)=\sin (x)$$ in the interval $$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$ is

AP EAPCET 2021 - 19th August Evening Shift
56

$$\tan 2 \alpha \cdot \tan (30 Y-\alpha)+\tan 2 \alpha \cdot \tan (60 Y-\alpha)+\tan (60 \Upsilon-\alpha) \cdot \tan (30 \gamma-\alpha)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
57

If $$\sin \alpha - \cos \alpha = m$$ and $$\sin 2\alpha = n - {m^2}$$, where $$ - \sqrt 2 \le m \le \sqrt 2 $$, then n is equal to

AP EAPCET 2021 - 19th August Morning Shift
58

If $$\sinh u=\tan \theta$$, then $$\cosh u$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12