Trigonometric Ratios & Identities · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
If $\cos \alpha+4 \cos \beta+9 \cos \gamma=0$ and $\sin \alpha+4 \sin \beta+9 \sin \gamma=0$, then 81 $\cos (2 \gamma-2 \alpha)-16 \cos (2 \beta-2 \alpha)$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
2
$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
3
$\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
4
$\cos 6^{\circ} \sin 24^{\circ} \cos 72^{\circ}$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
5

If $\sinh x=\frac{\sqrt{21}}{2}$, then $\cosh 2 x+\sinh 2 x$ is equal to

AP EAPCET 2024 - 22th May Evening Shift
6

If $M_1$ and $M_2$ are the maximum values of $\frac{1}{11 \cos 2 x+60 \sin 2 x+69}$ and $3 \cos ^2 5 x+4 \sin ^2 5 x$ respectively, then $\frac{M_1}{M_2}=$

AP EAPCET 2024 - 22th May Morning Shift
7

$$ 4 \cos \frac{\pi}{7} \cos \frac{\pi}{5} \cos \frac{2 \pi}{7} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{7}= $$

AP EAPCET 2024 - 22th May Morning Shift
8
If $\tanh x=\operatorname{sech} y=\frac{3}{5}$ and $e^{x+y}$ is an integer, then $e^{x+ y}$ =
AP EAPCET 2024 - 22th May Morning Shift
9
If $A, B, C$ are the angles of triangle, then $\sin 2 A-\sin 2 B+\sin 2 C=$
AP EAPCET 2024 - 21th May Evening Shift
10

Assertion (A) : If $A=10^{\circ}, B=16^{\circ}$ and $C=19^{\circ}$, then $\tan 2 A \tan 2 B+\tan 2 B \tan 2 C+\tan 2 C \tan 2 A=1$

Reason (R) : If $A+B+C=180^{\circ}, \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$

$$ =\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2} $$

Which of the following is correct ?

AP EAPCET 2024 - 21th May Evening Shift
11
If $\alpha$ is in the 3rd quadrant, $\beta$ is in the 2nd quadrant such that $\tan \alpha=\frac{1}{7}, \sin \beta=\frac{1}{\sqrt{10}}$, then $\sin (2 \alpha+\beta)=$
AP EAPCET 2024 - 21th May Evening Shift
12
If the period of the function $f(x)=\frac{\tan 5 x \cos 3 x}{\sin 6 x}$ is $\alpha$, then $f\left(\frac{\alpha}{8}\right)=$
AP EAPCET 2024 - 21th May Morning Shift
13
If $\sin x+\sin y=\alpha, \cos x+\cos y+\beta$, then $\operatorname{cosec}(x+y)=$
AP EAPCET 2024 - 21th May Morning Shift
14
If $P+Q+P=\frac{\pi}{4}$, then $\cos \left(\frac{\pi}{8}-P\right)+\cos \left(\frac{\pi}{8}-Q\right)+\cos$ $\left(\frac{\pi}{8}-R\right)=$
AP EAPCET 2024 - 21th May Morning Shift
15
If $\theta$ is an acute angle, $\cosh x=K$ and $\sinh x=\tan \theta$, then $\sin \theta=$
AP EAPCET 2024 - 21th May Morning Shift
16
If $\sec \theta+\tan \theta=\frac{1}{3}$, then the quadrant in which $2 \theta$ lies is
AP EAPCET 2024 - 20th May Evening Shift
17
If $540^{\circ} < A < 630^{\circ}$ and $|\cos A|=\frac{5}{13}$, then $\tan \frac{A}{2} \tan A=$
AP EAPCET 2024 - 20th May Evening Shift
18
If $(\alpha+\beta)$ is not a multiple of $\frac{\pi}{2}$ and $3 \sin (\alpha-\beta)=5 \cos (\alpha+\beta)$, then $\tan \left(\frac{\pi}{4}+\alpha\right)+4 \tan \left(\frac{\pi}{4}+\beta\right)=$
AP EAPCET 2024 - 20th May Evening Shift
19
If $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, then $\left(\cos ^3 \alpha+\cos ^3 \beta+\cos ^3 \gamma\right)^2+\left(\sin ^3 \alpha+\sin ^3 \beta+\sin ^3 \gamma\right)^2=$
AP EAPCET 2024 - 20th May Morning Shift
20
$$ \text { } \frac{\cos 10^{\circ}+\cos 80^{\circ}}{\sin 80^{\circ}-\sin 10^{\circ}}= $$
AP EAPCET 2024 - 20th May Morning Shift
21
$\frac{\sin 1^{\circ}+\sin 2^{\circ}+\ldots . . .+\sin 89^{\circ}}{2\left(\cos 1^{\circ}+\cos 2^{\circ}+\ldots+\cos 44^{\circ}\right)+1}=$
AP EAPCET 2024 - 20th May Morning Shift
22
The value of $5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ lies between
AP EAPCET 2024 - 19th May Evening Shift
23

Statement $(\mathrm{S} 1) \sin 55^{\circ}+\sin 53^{\circ}-\sin 19^{\circ}-\sin 17^{\circ}=\cos 2^{\circ}$

Statement (S2) Range of $\frac{1}{3-\cos 2 x}$ is $\left[\frac{1}{4}, \frac{1}{2}\right]$

Which one of the following is correct?

AP EAPCET 2024 - 19th May Evening Shift
24
$ \tan 6^\circ + \tan 42^\circ + \tan 66^\circ + \tan 78^\circ = $
AP EAPCET 2024 - 18th May Morning Shift
25
The maximum value of $12\sin x - 5\cos x + 3$ is
AP EAPCET 2024 - 18th May Morning Shift
26
$\sin^2 16^\circ - \sin^2 76^\circ = $
AP EAPCET 2024 - 18th May Morning Shift
27
By considering $1^{\prime}=0.0175$, he approximate value of $\cot 45^{\circ} 2^{\prime}$ is
AP EAPCET 2024 - 18th May Morning Shift
28

If $$\sin ^4 \theta \cos ^2 \theta=\sum_\limits{n=0}^{\infty} a_{2 n} \cos 2 n \theta$$, then the least $$n$$ for which $$a_{2 n}=0$$ is

AP EAPCET 2022 - 5th July Morning Shift
29

If $$\sin \theta=-\frac{3}{4}$$, then $$\sin 2 \theta=$$

AP EAPCET 2022 - 5th July Morning Shift
30

$$\begin{aligned} & \frac{1}{\sin 1^{\circ} \sin 2^{\circ}}+\frac{1}{\sin 2^{\circ} \sin 3^{\circ}}+\ldots +\frac{1}{\sin 89^{\circ}+\sin 90^{\circ}}= \end{aligned}$$

AP EAPCET 2022 - 5th July Morning Shift
31

Which of the following trigonometric values are negative?

I. $$\sin \left(-292^{\circ}\right)$$

II. $$\tan \left(-190^{\circ}\right)$$

III. $$\cos \left(-207^{\circ}\right)$$

IV. $$\cot \left(-222^{\circ}\right)$$

AP EAPCET 2022 - 5th July Morning Shift
32

$$\sin ^2 \frac{2 \pi}{3}+\cos ^2 \frac{5 \pi}{6}-\tan ^2 \frac{3 \pi}{4}=$$

AP EAPCET 2022 - 5th July Morning Shift
33

A true statement among the following identities is

AP EAPCET 2022 - 4th July Evening Shift
34

If $$A+B+C=\pi, \cos B=\cos A \cos C$$, then $$\tan A \tan C=$$

AP EAPCET 2022 - 4th July Evening Shift
35

The value of $$\tan \left(\frac{7 \pi}{8}\right)$$ is

AP EAPCET 2022 - 4th July Evening Shift
36

$$1+\sec ^2 x \sin ^2 x=$$

AP EAPCET 2022 - 4th July Evening Shift
37

If the identity $$\cos ^4 \theta=a \cos 4 \theta+b \cos 2 \theta+c$$ holds for some $$a, b, c \in Q$$ then $$(a, b, c)=$$

AP EAPCET 2022 - 4th July Morning Shift
38

The value of $$\frac{\sin \theta+\sin 3 \theta}{\cos \theta+\cos 3 \theta}$$ is

AP EAPCET 2022 - 4th July Morning Shift
39

If $$(1+\tan 1^{\circ})(1+\tan 2^{\circ}) \ldots(1+\tan 45^{\circ})=2^n,$$ then $$n=$$

AP EAPCET 2022 - 4th July Morning Shift
40

$$\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=$$

AP EAPCET 2022 - 4th July Morning Shift
41

If $$\operatorname{cosech} x=\frac{4}{5}$$, then $$\sinh x=$$

AP EAPCET 2022 - 4th July Morning Shift
42

What is the value of $$\cos \left(22 \frac{1}{2}\right)^{\circ}$$ ?

AP EAPCET 2021 - 20th August Morning Shift
43

If $$\cos \theta=-\sqrt{\frac{3}{2}}$$ and $$\sin \alpha=\frac{-3}{5}$$, where '$$\theta$$' does not lie in the third quadrant, then the value of $$\frac{2 \tan \alpha+\sqrt{3} \tan \theta}{\cot ^2 \theta+\cos \alpha}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
44

If $$\tan \beta=\frac{\tan \alpha+\tan \gamma}{1+\tan \alpha \tan \gamma}$$, then $$\frac{\sin 2 \alpha+\sin 2 \gamma}{1+\sin 2 \alpha \sin 2 \gamma}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
45

The sides of a triangle inscribed in a given circle subtend angles $$\alpha, \beta, \gamma$$ at the center. The minimum value of the AM of $$\cos \left(\alpha+\frac{\pi}{2}\right), \cos \left(\beta+\frac{\pi}{2}\right)$$ and $$\cos \left(\gamma+\frac{\pi}{2}\right)$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
46

In a $$\triangle A B C$$, if $$3 \sin A+4 \cos B=6$$ and $$4 \sin B+3 \cos A=1$$, then $$\sin (A+B)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
47

$$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
48

If $$f(x)=\frac{\cot x}{1+\cot x}$$ and $$\alpha+\beta=\frac{5 \pi}{4}$$, then the value of $$f(\alpha) f(\beta)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
49

In $$\triangle A B C \cdot \frac{a+b+c}{B C+A B}+\frac{a+b+c}{A C+A B}=3$$, then $$\tan \frac{C}{8}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
50

Mean of the values $$\sin ^2 10 Y, \sin ^2 20 Y, \sin ^2 30 Y, \ldots \ldots \ldots ., \sin ^2 90 Y$$ is

AP EAPCET 2021 - 19th August Evening Shift
51

When the coordinate axes are rotated through an angle 135$$\Upsilon$$, the coordinates of a point $$P$$ in the new system are known to be $$(4,-3)$$. Then find the coordinates of $$P$$ in the original system.

AP EAPCET 2021 - 19th August Evening Shift
52

The maximum value of $$f(x)=\sin (x)$$ in the interval $$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$ is

AP EAPCET 2021 - 19th August Evening Shift
53

$$\tan 2 \alpha \cdot \tan (30 Y-\alpha)+\tan 2 \alpha \cdot \tan (60 Y-\alpha)+\tan (60 \Upsilon-\alpha) \cdot \tan (30 \gamma-\alpha)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
54

If $$\sin \alpha - \cos \alpha = m$$ and $$\sin 2\alpha = n - {m^2}$$, where $$ - \sqrt 2 \le m \le \sqrt 2 $$, then n is equal to

AP EAPCET 2021 - 19th August Morning Shift
55

If $$\sinh u=\tan \theta$$, then $$\cosh u$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12