Trigonometric Ratios & Identities · Mathematics · AP EAPCET
MCQ (Single Correct Answer)
If $$\sin ^4 \theta \cos ^2 \theta=\sum_\limits{n=0}^{\infty} a_{2 n} \cos 2 n \theta$$, then the least $$n$$ for which $$a_{2 n}=0$$ is
If $$\sin \theta=-\frac{3}{4}$$, then $$\sin 2 \theta=$$
$$\begin{aligned} & \frac{1}{\sin 1^{\circ} \sin 2^{\circ}}+\frac{1}{\sin 2^{\circ} \sin 3^{\circ}}+\ldots +\frac{1}{\sin 89^{\circ}+\sin 90^{\circ}}= \end{aligned}$$
Which of the following trigonometric values are negative?
I. $$\sin \left(-292^{\circ}\right)$$
II. $$\tan \left(-190^{\circ}\right)$$
III. $$\cos \left(-207^{\circ}\right)$$
IV. $$\cot \left(-222^{\circ}\right)$$
$$\sin ^2 \frac{2 \pi}{3}+\cos ^2 \frac{5 \pi}{6}-\tan ^2 \frac{3 \pi}{4}=$$
A true statement among the following identities is
If $$A+B+C=\pi, \cos B=\cos A \cos C$$, then $$\tan A \tan C=$$
The value of $$\tan \left(\frac{7 \pi}{8}\right)$$ is
$$1+\sec ^2 x \sin ^2 x=$$
If the identity $$\cos ^4 \theta=a \cos 4 \theta+b \cos 2 \theta+c$$ holds for some $$a, b, c \in Q$$ then $$(a, b, c)=$$
The value of $$\frac{\sin \theta+\sin 3 \theta}{\cos \theta+\cos 3 \theta}$$ is
If $$(1+\tan 1^{\circ})(1+\tan 2^{\circ}) \ldots(1+\tan 45^{\circ})=2^n,$$ then $$n=$$
$$\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=$$
If $$\operatorname{cosech} x=\frac{4}{5}$$, then $$\sinh x=$$
What is the value of $$\cos \left(22 \frac{1}{2}\right)^{\circ}$$ ?
If $$\cos \theta=-\sqrt{\frac{3}{2}}$$ and $$\sin \alpha=\frac{-3}{5}$$, where '$$\theta$$' does not lie in the third quadrant, then the value of $$\frac{2 \tan \alpha+\sqrt{3} \tan \theta}{\cot ^2 \theta+\cos \alpha}$$ is equal to
If $$\tan \beta=\frac{\tan \alpha+\tan \gamma}{1+\tan \alpha \tan \gamma}$$, then $$\frac{\sin 2 \alpha+\sin 2 \gamma}{1+\sin 2 \alpha \sin 2 \gamma}$$ is equal to
The sides of a triangle inscribed in a given circle subtend angles $$\alpha, \beta, \gamma$$ at the center. The minimum value of the AM of $$\cos \left(\alpha+\frac{\pi}{2}\right), \cos \left(\beta+\frac{\pi}{2}\right)$$ and $$\cos \left(\gamma+\frac{\pi}{2}\right)$$ is equal to
In a $$\triangle A B C$$, if $$3 \sin A+4 \cos B=6$$ and $$4 \sin B+3 \cos A=1$$, then $$\sin (A+B)$$ is equal to
$$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$$ is equal to
If $$f(x)=\frac{\cot x}{1+\cot x}$$ and $$\alpha+\beta=\frac{5 \pi}{4}$$, then the value of $$f(\alpha) f(\beta)$$ is equal to
In $$\triangle A B C \cdot \frac{a+b+c}{B C+A B}+\frac{a+b+c}{A C+A B}=3$$, then $$\tan \frac{C}{8}$$ is equal to
Mean of the values $$\sin ^2 10 Y, \sin ^2 20 Y, \sin ^2 30 Y, \ldots \ldots \ldots ., \sin ^2 90 Y$$ is
When the coordinate axes are rotated through an angle 135$$\Upsilon$$, the coordinates of a point $$P$$ in the new system are known to be $$(4,-3)$$. Then find the coordinates of $$P$$ in the original system.
The maximum value of $$f(x)=\sin (x)$$ in the interval $$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$ is
$$\tan 2 \alpha \cdot \tan (30 Y-\alpha)+\tan 2 \alpha \cdot \tan (60 Y-\alpha)+\tan (60 \Upsilon-\alpha) \cdot \tan (30 \gamma-\alpha)$$ is equal to
If $$\sin \alpha - \cos \alpha = m$$ and $$\sin 2\alpha = n - {m^2}$$, where $$ - \sqrt 2 \le m \le \sqrt 2 $$, then n is equal to
If $$\sinh u=\tan \theta$$, then $$\cosh u$$ is equal to