Indefinite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
If $\frac{1}{x^4+1}=\frac{A x+B}{x^2+\sqrt{2} x+1}+\frac{C x+D}{x^2-\sqrt{2} x+1}$, then $B D-A C=$
AP EAPCET 2024 - 19th May Evening Shift
2
$$ \int \frac{2 x^2 \cos x^2-\sin x^2}{x^2} d x= $$
AP EAPCET 2024 - 19th May Evening Shift
3
If $\int \frac{\log \left(1+x^4\right)}{x^3} d x=f(x) \log \left(\frac{1}{g(x)}\right)+\tan ^{-1}$ $(h(x))+c$, then $h(x)\left[f(x)+f\left(\frac{1}{x}\right)\right]=$
AP EAPCET 2024 - 19th May Evening Shift
4
Let $f(x)=\int \frac{x}{\left(x^2+1\right)\left(x^2+3\right)} d x$. If $f(3)=\frac{1}{4} \log \left(\frac{5}{6}\right)$, then $f(0)=$
AP EAPCET 2024 - 19th May Evening Shift
5
$$ \int \frac{2 \cos 2 x}{(1+\sin 2 x)(1+\cos 2 x)} d x= $$
AP EAPCET 2024 - 19th May Evening Shift
6
$$ \int\left(\frac{x}{x \cos x-\sin x}\right)^2 d x= $$
AP EAPCET 2024 - 19th May Evening Shift
7
$\int \frac{1}{x^5 \sqrt[3]{x^3+1}} d x=$
AP EAPCET 2024 - 18th May Morning Shift
8
$\int \frac{x+1}{\sqrt{x^2+x+1}} d x=$
AP EAPCET 2024 - 18th May Morning Shift
9
$\int\left(\tan ^9 x+\tan x\right) d x=0$
AP EAPCET 2024 - 18th May Morning Shift
10
$\int \frac{\operatorname{cosec} x}{3 \cos x+4 \sin x} d x=$
AP EAPCET 2024 - 18th May Morning Shift
11
$\int e^{2 x+3} \sin 6 x d x=$
AP EAPCET 2024 - 18th May Morning Shift
12

$$\frac{2 x^2+1}{x^3-1}=\frac{A}{x-1}+\frac{B x+C}{x^2+x+1} \Rightarrow 7 A+2 B+C=$$

AP EAPCET 2022 - 5th July Morning Shift
13

$$\int \frac{3 x+4}{x^3-2 x+4} d x=\log f(x)+C \Rightarrow f(3)=$$

AP EAPCET 2022 - 5th July Morning Shift
14

$$\int \frac{e^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] d x=$$

AP EAPCET 2022 - 5th July Morning Shift
15

$$\int \frac{d x}{(x-3)^{\frac{4}{5}}(x+1)^{\frac{6}{5}}}=$$

AP EAPCET 2022 - 5th July Morning Shift
16

If $$I_n=\int\left(\cos ^n x+\sin ^n x\right) d x$$ and $$I_n-\frac{n-1}{n} I_{n-2} =\frac{\sin x \cos x}{n} f(x)$$, then $$f(x)=$$

AP EAPCET 2022 - 5th July Morning Shift
17

If $$f(x)=\int x^2 \cos ^2 x\left(2 x \tan ^2 x-2 x-6 \tan x\right) d x$$ and $$f(0)=\pi$$, then $$f(x)=$$

AP EAPCET 2022 - 4th July Evening Shift
18

If $$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}(x+\sqrt{x}) d x=e^{\sqrt{x}}[A x+B \sqrt{x}+C]+K$$ then $$A+B+C=$$

AP EAPCET 2022 - 4th July Evening Shift
19

If $$\int \frac{1+\sqrt{\tan x}}{\sin 2 x} d x=A \log \tan x+B \tan x+C$$, then $$4 A-2 B=$$

AP EAPCET 2022 - 4th July Evening Shift
20

$$\int \frac{1+\tan x \tan (x+a)}{\tan x \tan (x+a)} d x=$$

AP EAPCET 2022 - 4th July Evening Shift
21

Assertion (A) If $$I_n=\int \cot ^n x d x$$, then $$I_6+I_4=\frac{-\cot ^5 x}{5}$$

Reason (R) $$\int \cot ^n x d x=\frac{-\cot ^{n-1} x}{n} -\int \cot ^{n-2} x d x$$

AP EAPCET 2022 - 4th July Morning Shift
22

If $$I_n=\int \tan ^n x d x$$, and $$I_0+I_1+2 I_2+2 I_3+2 I_4 +I_5+I_6=\sum_\limits{k=1}^n \frac{\tan ^k x}{k}$$, then $$n=$$

AP EAPCET 2022 - 4th July Morning Shift
23

$$\int \frac{e^{\cot x}}{\sin ^2 x}(2 \log \operatorname{cosec} x+\sin 2 x) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
24

The parametric form of a curve is $$x=\frac{t^3}{t^2-1} y=\frac{t}{t^2-1}$$, then $$\int \frac{d x}{x-3 y}=$$

AP EAPCET 2022 - 4th July Morning Shift
25

Given, $$\frac{3 x-2}{(x+1)^2(x+3)}=\frac{A}{x+1} +\frac{B}{(x+1)^2}+\frac{C}{x+3}$$, then $$4 A+2 B+4 C$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
26

$$\int \frac{\sin \alpha}{\sqrt{1+\cos \alpha}} d \alpha$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
27

If $$\int \frac{\cos 4 x+1}{\cot x-\tan x}=k \cos 4 x+C$$, then $$k$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
28

If $$\int\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+c\right.$$ then $$f(x) \cdot g(x)$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
29

If $$\int \frac{(2 x+1)^6}{(3 x+2)^8} d x=P\left(\frac{2 x+1}{3 x+2}\right)^Q+R$$, then $$\frac{P}{Q}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
30

Which of the following is partial fraction of $$\frac{-x^2+6 x+13}{(3 x+5)\left(x^2+4 x+4\right)}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
31

$$\int \frac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
32

$$\int(\cos x) \log \cot \left(\frac{x}{2}\right) d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
33

$$\int \sqrt{e^{4 x}+e^{2 x}} d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
34

If $$\int \frac{1}{1+\sin x} d x=\tan (f(x))+c$$, then $$f^{\prime}(0)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
35

$$\int \frac{e^x(x+3)}{(x+5)^3} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
36

If $$\int \frac{(x-1)^2}{\left(x^2+1\right)^2} d x=\tan ^{-1}(x)+g(x)+k$$, then $$g(x)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
37

If $$\int \frac{1-(\cot x)^{2021}}{\tan x+(\cot x)^{2022}} d x=\frac{1}{A} \log\left|(\sin x)^{2023}+(\cos x)^{2023}\right|+c$$, then $$A$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12