Indefinite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
If $\frac{x^2+3}{x^4+2 x^2+9}=\frac{A x+B}{x^2+a x+b}+\frac{C x+D}{x^2+c x+b}$, then $a A+b B+c C+D=$
AP EAPCET 2024 - 20th May Evening Shift
2
$\int \frac{d x}{x\left(x^4+1\right)}=$
AP EAPCET 2024 - 20th May Evening Shift
3
$\int \frac{d x}{\sqrt{\sin ^3 x \cos (x-a)}}=$
AP EAPCET 2024 - 20th May Evening Shift
4
$\int \frac{e^{2 x}}{\sqrt[4]{e^x+1}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
5
$\int \frac{2-\sin x}{2 \cos x+3} d x=$
AP EAPCET 2024 - 20th May Evening Shift
6
$\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
7
If $\frac{A}{x-a}+\frac{B x+C}{x^2+b^2}=\frac{1}{(x-a)\left(x^2+b^2\right)}$, then $\mathrm{C}=$
AP EAPCET 2024 - 20th May Morning Shift
8
$\int \frac{2 x^2-3}{\left(x^2-4\right)\left(x^2+1\right)} d x=A \tan ^{-1} x+B \log (x-2)+C \log (x+2)$, then $6 A+7 B-5 C=$
AP EAPCET 2024 - 20th May Morning Shift
9
$\int \frac{3 x^9+7 x^8}{\left(x^2+2 x+5 x^8\right)^2} d x=$
AP EAPCET 2024 - 20th May Morning Shift
10
$\int \frac{\cos x+x \sin x}{x(x+\cos x)} d x=$
AP EAPCET 2024 - 20th May Morning Shift
11
If $\int \sqrt{\frac{2}{1+\sin x}} d x=2 \log |A(x)-B(x)|+C$ and $0 \leq x \leq \frac{\pi}{2}$, then $B\left(\frac{\pi}{4}\right)=$
AP EAPCET 2024 - 20th May Morning Shift
12

$$ \begin{aligned} &\text { If } \int \frac{3}{2 \cos ^3 x \sqrt{2 \sin 2 x}} d x=\frac{3}{2}(\tan x)^B+\frac{3}{10}(\tan x)^A+C \text {, than }\\&A= \end{aligned} $$

AP EAPCET 2024 - 20th May Morning Shift
13
If $\frac{1}{x^4+1}=\frac{A x+B}{x^2+\sqrt{2} x+1}+\frac{C x+D}{x^2-\sqrt{2} x+1}$, then $B D-A C=$
AP EAPCET 2024 - 19th May Evening Shift
14
$$ \int \frac{2 x^2 \cos x^2-\sin x^2}{x^2} d x= $$
AP EAPCET 2024 - 19th May Evening Shift
15
If $\int \frac{\log \left(1+x^4\right)}{x^3} d x=f(x) \log \left(\frac{1}{g(x)}\right)+\tan ^{-1}$ $(h(x))+c$, then $h(x)\left[f(x)+f\left(\frac{1}{x}\right)\right]=$
AP EAPCET 2024 - 19th May Evening Shift
16
Let $f(x)=\int \frac{x}{\left(x^2+1\right)\left(x^2+3\right)} d x$. If $f(3)=\frac{1}{4} \log \left(\frac{5}{6}\right)$, then $f(0)=$
AP EAPCET 2024 - 19th May Evening Shift
17
$$ \int \frac{2 \cos 2 x}{(1+\sin 2 x)(1+\cos 2 x)} d x= $$
AP EAPCET 2024 - 19th May Evening Shift
18
$$ \int\left(\frac{x}{x \cos x-\sin x}\right)^2 d x= $$
AP EAPCET 2024 - 19th May Evening Shift
19
$\int \frac{1}{x^5 \sqrt[3]{x^3+1}} d x=$
AP EAPCET 2024 - 18th May Morning Shift
20
$\int \frac{x+1}{\sqrt{x^2+x+1}} d x=$
AP EAPCET 2024 - 18th May Morning Shift
21
$\int\left(\tan ^9 x+\tan x\right) d x=0$
AP EAPCET 2024 - 18th May Morning Shift
22
$\int \frac{\operatorname{cosec} x}{3 \cos x+4 \sin x} d x=$
AP EAPCET 2024 - 18th May Morning Shift
23
$\int e^{2 x+3} \sin 6 x d x=$
AP EAPCET 2024 - 18th May Morning Shift
24

$$\frac{2 x^2+1}{x^3-1}=\frac{A}{x-1}+\frac{B x+C}{x^2+x+1} \Rightarrow 7 A+2 B+C=$$

AP EAPCET 2022 - 5th July Morning Shift
25

$$\int \frac{3 x+4}{x^3-2 x+4} d x=\log f(x)+C \Rightarrow f(3)=$$

AP EAPCET 2022 - 5th July Morning Shift
26

$$\int \frac{e^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] d x=$$

AP EAPCET 2022 - 5th July Morning Shift
27

$$\int \frac{d x}{(x-3)^{\frac{4}{5}}(x+1)^{\frac{6}{5}}}=$$

AP EAPCET 2022 - 5th July Morning Shift
28

If $$I_n=\int\left(\cos ^n x+\sin ^n x\right) d x$$ and $$I_n-\frac{n-1}{n} I_{n-2} =\frac{\sin x \cos x}{n} f(x)$$, then $$f(x)=$$

AP EAPCET 2022 - 5th July Morning Shift
29

If $$f(x)=\int x^2 \cos ^2 x\left(2 x \tan ^2 x-2 x-6 \tan x\right) d x$$ and $$f(0)=\pi$$, then $$f(x)=$$

AP EAPCET 2022 - 4th July Evening Shift
30

If $$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}(x+\sqrt{x}) d x=e^{\sqrt{x}}[A x+B \sqrt{x}+C]+K$$ then $$A+B+C=$$

AP EAPCET 2022 - 4th July Evening Shift
31

If $$\int \frac{1+\sqrt{\tan x}}{\sin 2 x} d x=A \log \tan x+B \tan x+C$$, then $$4 A-2 B=$$

AP EAPCET 2022 - 4th July Evening Shift
32

$$\int \frac{1+\tan x \tan (x+a)}{\tan x \tan (x+a)} d x=$$

AP EAPCET 2022 - 4th July Evening Shift
33

Assertion (A) If $$I_n=\int \cot ^n x d x$$, then $$I_6+I_4=\frac{-\cot ^5 x}{5}$$

Reason (R) $$\int \cot ^n x d x=\frac{-\cot ^{n-1} x}{n} -\int \cot ^{n-2} x d x$$

AP EAPCET 2022 - 4th July Morning Shift
34

If $$I_n=\int \tan ^n x d x$$, and $$I_0+I_1+2 I_2+2 I_3+2 I_4 +I_5+I_6=\sum_\limits{k=1}^n \frac{\tan ^k x}{k}$$, then $$n=$$

AP EAPCET 2022 - 4th July Morning Shift
35

$$\int \frac{e^{\cot x}}{\sin ^2 x}(2 \log \operatorname{cosec} x+\sin 2 x) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
36

The parametric form of a curve is $$x=\frac{t^3}{t^2-1} y=\frac{t}{t^2-1}$$, then $$\int \frac{d x}{x-3 y}=$$

AP EAPCET 2022 - 4th July Morning Shift
37

Given, $$\frac{3 x-2}{(x+1)^2(x+3)}=\frac{A}{x+1} +\frac{B}{(x+1)^2}+\frac{C}{x+3}$$, then $$4 A+2 B+4 C$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
38

$$\int \frac{\sin \alpha}{\sqrt{1+\cos \alpha}} d \alpha$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
39

If $$\int \frac{\cos 4 x+1}{\cot x-\tan x}=k \cos 4 x+C$$, then $$k$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
40

If $$\int\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+c\right.$$ then $$f(x) \cdot g(x)$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
41

If $$\int \frac{(2 x+1)^6}{(3 x+2)^8} d x=P\left(\frac{2 x+1}{3 x+2}\right)^Q+R$$, then $$\frac{P}{Q}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
42

Which of the following is partial fraction of $$\frac{-x^2+6 x+13}{(3 x+5)\left(x^2+4 x+4\right)}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
43

$$\int \frac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
44

$$\int(\cos x) \log \cot \left(\frac{x}{2}\right) d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
45

$$\int \sqrt{e^{4 x}+e^{2 x}} d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
46

If $$\int \frac{1}{1+\sin x} d x=\tan (f(x))+c$$, then $$f^{\prime}(0)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
47

$$\int \frac{e^x(x+3)}{(x+5)^3} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
48

If $$\int \frac{(x-1)^2}{\left(x^2+1\right)^2} d x=\tan ^{-1}(x)+g(x)+k$$, then $$g(x)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
49

If $$\int \frac{1-(\cot x)^{2021}}{\tan x+(\cot x)^{2022}} d x=\frac{1}{A} \log\left|(\sin x)^{2023}+(\cos x)^{2023}\right|+c$$, then $$A$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12