Indefinite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1

$$ \text { If } \frac{13 x+43}{2 x^2+17 x+30}=\frac{A}{2 x+5}+\frac{B}{x+6} \text {, then } A+B \text { is equal to } $$

AP EAPCET 2024 - 22th May Evening Shift
2
$\int e^{4 x^2+8 x-4}(x+1) \cos \left(3 x^2+6 x-4\right) d x$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
3
$\int\left[(\log 2 x)^2+2 \log 2 x\right] d x$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
4

If $\int \log \left(6 \sin ^2 x+17 \sin x+12\right) \cos x d x=f(x)+c$, then $f\left(\frac{\pi}{2}\right)$ is equal to

AP EAPCET 2024 - 22th May Evening Shift
5
$\int \frac{1}{\left(1+x^2\right) \sqrt{x^2+2}} d x$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
6
$\int \sin ^4 x \cos ^4 x d x$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
7
$$ \int \frac{x^2-1}{x^3 \sqrt{2 x^4-2 x^2+1}} d x $$
AP EAPCET 2024 - 22th May Morning Shift
8

$$ \int \frac{x^3 \tan ^{-1} x^4}{1+x^8} d x= $$

AP EAPCET 2024 - 22th May Morning Shift
9
$$ \int \frac{2}{1+x+x^2} d x= $$
AP EAPCET 2024 - 22th May Morning Shift
10

$$ \int \frac{1}{x^2\left(\sqrt{1+x^2}\right)} d x= $$

AP EAPCET 2024 - 22th May Morning Shift
11

$$ \int \frac{\sin 7 x}{\sin 2 x \sin 5 x} d x= $$

AP EAPCET 2024 - 22th May Morning Shift
12
If $\frac{x+2}{\left(x^2+3\right)\left(x^4+x^2\right)\left(x^2+2\right)}=\frac{A x+B}{x^2+3}+\frac{C x+D}{x^2+2}$ $+\frac{E x^3+F x^2+G x+H}{x^4+x^2}$, then $(E+F)(C+D)(A)=$
AP EAPCET 2024 - 21th May Evening Shift
13
$\int \frac{\sin ^6 x}{\cos ^8 x} d x=$
AP EAPCET 2024 - 21th May Evening Shift
14
$\int \frac{x^5}{x^2+1} d x=$
AP EAPCET 2024 - 21th May Evening Shift
15
$$\int {\left( {\sum\limits_{r = 0}^\infty {{{{x^r}{3^r}} \over {r!}}} } \right)dx = } $$
AP EAPCET 2024 - 21th May Evening Shift
16
$\int \frac{x^4+1}{x^6+1} d x=$
AP EAPCET 2024 - 21th May Evening Shift
17
$\int e^x(x+1)^2 d x=$
AP EAPCET 2024 - 21th May Evening Shift
18

If $\frac{1}{(3 x+1)(x-2)}=\frac{A}{3 x+1}+\frac{B}{x-2}$ and $\frac{x+1}{(3 x+1)(x-2)}=\frac{C}{3 x+1}+\frac{D}{x-2}$, then

AP EAPCET 2024 - 21th May Morning Shift
19
If $x \in\left[2 n \pi-\frac{\pi}{4}, 2 n \pi+\frac{3 \pi}{4}\right]$ and $n \in Z$, then $\int \sqrt{1-\sin 2 x} d x=$
AP EAPCET 2024 - 21th May Morning Shift
20
$\int e^x\left(\frac{x+2}{x+4}\right)^2 d x=$
AP EAPCET 2024 - 21th May Morning Shift
21
If $\int \frac{1}{1-\cos x} d x=\tan \left(\frac{x}{\alpha}+\beta\right)+c$, then one of the values of $\frac{\pi \alpha}{4}-\beta$ is
AP EAPCET 2024 - 21th May Morning Shift
22
If $n \geq 2$ is a natural number and $0<\theta<\frac{\pi}{2}$, then $\int \frac{\left(\cos ^n \theta-\cos \theta\right)^{1 / n}}{\cos ^{n+1} \theta} \sin \theta d \theta=$
AP EAPCET 2024 - 21th May Morning Shift
23
If $\frac{x^2+3}{x^4+2 x^2+9}=\frac{A x+B}{x^2+a x+b}+\frac{C x+D}{x^2+c x+b}$, then $a A+b B+c C+D=$
AP EAPCET 2024 - 20th May Evening Shift
24
$\int \frac{d x}{x\left(x^4+1\right)}=$
AP EAPCET 2024 - 20th May Evening Shift
25
$\int \frac{d x}{\sqrt{\sin ^3 x \cos (x-a)}}=$
AP EAPCET 2024 - 20th May Evening Shift
26
$\int \frac{e^{2 x}}{\sqrt[4]{e^x+1}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
27
$\int \frac{2-\sin x}{2 \cos x+3} d x=$
AP EAPCET 2024 - 20th May Evening Shift
28
$\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
29
If $\frac{A}{x-a}+\frac{B x+C}{x^2+b^2}=\frac{1}{(x-a)\left(x^2+b^2\right)}$, then $\mathrm{C}=$
AP EAPCET 2024 - 20th May Morning Shift
30
$\int \frac{2 x^2-3}{\left(x^2-4\right)\left(x^2+1\right)} d x=A \tan ^{-1} x+B \log (x-2)+C \log (x+2)$, then $6 A+7 B-5 C=$
AP EAPCET 2024 - 20th May Morning Shift
31
$\int \frac{3 x^9+7 x^8}{\left(x^2+2 x+5 x^8\right)^2} d x=$
AP EAPCET 2024 - 20th May Morning Shift
32
$\int \frac{\cos x+x \sin x}{x(x+\cos x)} d x=$
AP EAPCET 2024 - 20th May Morning Shift
33
If $\int \sqrt{\frac{2}{1+\sin x}} d x=2 \log |A(x)-B(x)|+C$ and $0 \leq x \leq \frac{\pi}{2}$, then $B\left(\frac{\pi}{4}\right)=$
AP EAPCET 2024 - 20th May Morning Shift
34

$$ \begin{aligned} &\text { If } \int \frac{3}{2 \cos ^3 x \sqrt{2 \sin 2 x}} d x=\frac{3}{2}(\tan x)^B+\frac{3}{10}(\tan x)^A+C \text {, than }\\&A= \end{aligned} $$

AP EAPCET 2024 - 20th May Morning Shift
35
If $\frac{1}{x^4+1}=\frac{A x+B}{x^2+\sqrt{2} x+1}+\frac{C x+D}{x^2-\sqrt{2} x+1}$, then $B D-A C=$
AP EAPCET 2024 - 19th May Evening Shift
36
$$ \int \frac{2 x^2 \cos x^2-\sin x^2}{x^2} d x= $$
AP EAPCET 2024 - 19th May Evening Shift
37
If $\int \frac{\log \left(1+x^4\right)}{x^3} d x=f(x) \log \left(\frac{1}{g(x)}\right)+\tan ^{-1}$ $(h(x))+c$, then $h(x)\left[f(x)+f\left(\frac{1}{x}\right)\right]=$
AP EAPCET 2024 - 19th May Evening Shift
38
Let $f(x)=\int \frac{x}{\left(x^2+1\right)\left(x^2+3\right)} d x$. If $f(3)=\frac{1}{4} \log \left(\frac{5}{6}\right)$, then $f(0)=$
AP EAPCET 2024 - 19th May Evening Shift
39
$$ \int \frac{2 \cos 2 x}{(1+\sin 2 x)(1+\cos 2 x)} d x= $$
AP EAPCET 2024 - 19th May Evening Shift
40
$$ \int\left(\frac{x}{x \cos x-\sin x}\right)^2 d x= $$
AP EAPCET 2024 - 19th May Evening Shift
41
$\int \frac{1}{x^5 \sqrt[3]{x^3+1}} d x=$
AP EAPCET 2024 - 18th May Morning Shift
42
$\int \frac{x+1}{\sqrt{x^2+x+1}} d x=$
AP EAPCET 2024 - 18th May Morning Shift
43
$\int\left(\tan ^9 x+\tan x\right) d x=0$
AP EAPCET 2024 - 18th May Morning Shift
44
$\int \frac{\operatorname{cosec} x}{3 \cos x+4 \sin x} d x=$
AP EAPCET 2024 - 18th May Morning Shift
45
$\int e^{2 x+3} \sin 6 x d x=$
AP EAPCET 2024 - 18th May Morning Shift
46

$$\frac{2 x^2+1}{x^3-1}=\frac{A}{x-1}+\frac{B x+C}{x^2+x+1} \Rightarrow 7 A+2 B+C=$$

AP EAPCET 2022 - 5th July Morning Shift
47

$$\int \frac{3 x+4}{x^3-2 x+4} d x=\log f(x)+C \Rightarrow f(3)=$$

AP EAPCET 2022 - 5th July Morning Shift
48

$$\int \frac{e^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] d x=$$

AP EAPCET 2022 - 5th July Morning Shift
49

$$\int \frac{d x}{(x-3)^{\frac{4}{5}}(x+1)^{\frac{6}{5}}}=$$

AP EAPCET 2022 - 5th July Morning Shift
50

If $$I_n=\int\left(\cos ^n x+\sin ^n x\right) d x$$ and $$I_n-\frac{n-1}{n} I_{n-2} =\frac{\sin x \cos x}{n} f(x)$$, then $$f(x)=$$

AP EAPCET 2022 - 5th July Morning Shift
51

If $$f(x)=\int x^2 \cos ^2 x\left(2 x \tan ^2 x-2 x-6 \tan x\right) d x$$ and $$f(0)=\pi$$, then $$f(x)=$$

AP EAPCET 2022 - 4th July Evening Shift
52

If $$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}(x+\sqrt{x}) d x=e^{\sqrt{x}}[A x+B \sqrt{x}+C]+K$$ then $$A+B+C=$$

AP EAPCET 2022 - 4th July Evening Shift
53

If $$\int \frac{1+\sqrt{\tan x}}{\sin 2 x} d x=A \log \tan x+B \tan x+C$$, then $$4 A-2 B=$$

AP EAPCET 2022 - 4th July Evening Shift
54

$$\int \frac{1+\tan x \tan (x+a)}{\tan x \tan (x+a)} d x=$$

AP EAPCET 2022 - 4th July Evening Shift
55

Assertion (A) If $$I_n=\int \cot ^n x d x$$, then $$I_6+I_4=\frac{-\cot ^5 x}{5}$$

Reason (R) $$\int \cot ^n x d x=\frac{-\cot ^{n-1} x}{n} -\int \cot ^{n-2} x d x$$

AP EAPCET 2022 - 4th July Morning Shift
56

If $$I_n=\int \tan ^n x d x$$, and $$I_0+I_1+2 I_2+2 I_3+2 I_4 +I_5+I_6=\sum_\limits{k=1}^n \frac{\tan ^k x}{k}$$, then $$n=$$

AP EAPCET 2022 - 4th July Morning Shift
57

$$\int \frac{e^{\cot x}}{\sin ^2 x}(2 \log \operatorname{cosec} x+\sin 2 x) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
58

The parametric form of a curve is $$x=\frac{t^3}{t^2-1} y=\frac{t}{t^2-1}$$, then $$\int \frac{d x}{x-3 y}=$$

AP EAPCET 2022 - 4th July Morning Shift
59

Given, $$\frac{3 x-2}{(x+1)^2(x+3)}=\frac{A}{x+1} +\frac{B}{(x+1)^2}+\frac{C}{x+3}$$, then $$4 A+2 B+4 C$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
60

$$\int \frac{\sin \alpha}{\sqrt{1+\cos \alpha}} d \alpha$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
61

If $$\int \frac{\cos 4 x+1}{\cot x-\tan x}=k \cos 4 x+C$$, then $$k$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
62

If $$\int\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+c\right.$$ then $$f(x) \cdot g(x)$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
63

If $$\int \frac{(2 x+1)^6}{(3 x+2)^8} d x=P\left(\frac{2 x+1}{3 x+2}\right)^Q+R$$, then $$\frac{P}{Q}$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
64

Which of the following is partial fraction of $$\frac{-x^2+6 x+13}{(3 x+5)\left(x^2+4 x+4\right)}$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
65

$$\int \frac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
66

$$\int(\cos x) \log \cot \left(\frac{x}{2}\right) d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
67

$$\int \sqrt{e^{4 x}+e^{2 x}} d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
68

If $$\int \frac{1}{1+\sin x} d x=\tan (f(x))+c$$, then $$f^{\prime}(0)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
69

$$\int \frac{e^x(x+3)}{(x+5)^3} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
70

If $$\int \frac{(x-1)^2}{\left(x^2+1\right)^2} d x=\tan ^{-1}(x)+g(x)+k$$, then $$g(x)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
71

If $$\int \frac{1-(\cot x)^{2021}}{\tan x+(\cot x)^{2022}} d x=\frac{1}{A} \log\left|(\sin x)^{2023}+(\cos x)^{2023}\right|+c$$, then $$A$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12