1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If a circle is inscribed in an equilateral triangle of side $a$, then the area of any square (in sq units) inscribed in this circle is
A
$\frac{2 a^2}{3}$
B
$\sqrt{3} \frac{a^2}{2}$
C
$\frac{a^2}{2 \sqrt{3}}$
D
$\frac{a^2}{6}$
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the line segment joining the points $(1,0)$ and $(0,1)$ subtends an angle of $45^{\circ}$ at a variable point $P$, then the equation of the locus of $P$ is
A
$\left(x^2+y^2-1\right)\left(x^2+y^2-2 x-2 y+1\right)=0, x \neq 0,1$
B
$\left(x^2+y^2-1\right)\left(x^2+y^2+2 x+2 y+1\right)=0, x \neq 0,1$
C
$x^2+y^2+2 x+2 y+1=0$
D
$x^2+y^2=4$
3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Equation of the circle having its centre on the line $2 x+y+3=0$ and having the lines $3 x+4 y-18=0,3 x+4 y+2=0$ as tangents is

A
$x^2+y^2+6 x+8 y+4=0$
B
$x^2+y^2-6 x-8 y+18=0$
C
$x^2+y^2-8 x+10 y+37=0$
D
$x^2+y^2+8 x-10 y+37=0$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If power of a point $(4,2)$ with respect to the circle $x^2+y^2-2 \alpha x+6 y+\alpha^2-16=0$ is 9 , then the sum of the lengths of all possible intercepts made by such circles on the coordinate axes is
A
$16+4 \sqrt{6}$
B
$16+4 \sqrt{6}-6 \sqrt{2}$
C
$16+4 \sqrt{6}+6 \sqrt{2}$
D
$16+6 \sqrt{2}$
AP EAPCET Subjects
EXAM MAP