Trigonometric Equations · Mathematics · AP EAPCET
MCQ (Single Correct Answer)
The values of $x$ in $(-\pi, \pi)$, which satisfy the equation $8^{1+\cos ^2 x+\cos ^4 x+\ldots \ldots}=4^3$ are
The general solution of
$$ \begin{aligned} & 4 \cos 2 x-4 \sqrt{3} \sin 2 x+\cos 3 x-\sqrt{3} \sin 3 x \\ & \qquad+\cos x-\sqrt{3} \sin x=0 \end{aligned} $$
$$\text { If } \sin \theta+\operatorname{cosec} \theta=4, \text { then } \sin ^2 \theta+\operatorname{cosec}^2 \theta=$$
If $$2 \cosh 2 x+10 \sinh 2 x=5$$, then $$x=$$
If $$\sin \left(\frac{\pi}{4} \cos \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$$, then $$\theta$$ is equal to
If $$\theta \in[0,2 \pi]$$ and $$\cos 2 \theta=\cos \theta+\sin \theta$$, then the sum of all values of $$\theta$$ satisfying the equation is
The value of $$x$$ satisfying the equation $$3 \operatorname{cosec} x=4 \sin x$$ are