1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $[r]$ denote the largest integer not exceeditio $r$ and the roots of the equation $3 x^2+6 x+5+\alpha\left(x^2+2 x+2\right)=0$ are complex number when ever $\alpha>L$ and $\alpha
A
$L$
B
$M$
C
$L+M$
D
$M-L$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
For any real value of $x$. If $\frac{11 x^2+12 x+6}{x^2+4 x+2} \notin(a, b)$, then the value $x$ for which $\frac{11 x^2+12 x+6}{x^2+4 x+2}=b-a+3$ is
A
$\frac{3}{4}$
B
$\frac{3}{2}$
C
2
D
$-\frac{1}{2}$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the roots of $\sqrt{\frac{1-y}{y}}+\sqrt{\frac{y}{1-y}}=\frac{5}{2}$ are $\alpha$ and $\beta(\beta>\alpha)$ and the equation $(\alpha+\beta) x^4-25 \alpha \beta x^2+(\gamma+\beta-\alpha)=0$ has real roots, then a possible value of $\gamma$ is
A
$\frac{1}{2}$
B
4
C
$2 \pi$
D
$\sqrt{e+13}$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha$ and $\beta$ are two double roots of $x^2+3(a+3) x-9 a=0$ for different values of $a(\alpha>\beta)$, then the minimum value of $x^2+\alpha x-\beta=0$ is
A
$\frac{69}{4}$
B
$-\frac{69}{4}$
C
$-\frac{35}{4}$
D
$\frac{35}{4}$
AP EAPCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12