Complex Numbers · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
$\arg \left[\frac{(1+i \sqrt{3})(-\sqrt{3}-i)}{(1-i)(-i)}\right]$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
2

If $P(x, y)$ represents the complex number $z=x+iy$ in the argand plane and $\arg \left(\frac{z-3 i}{z+4}\right)=\frac{\pi}{2}$, then the equation of the locus of $P$ is

AP EAPCET 2024 - 22th May Evening Shift
3

If $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and $\alpha_5$ are the roots of $x^5-5 x^4+9 x^3-9 x^2+5 x-1=0$, then $\frac{1}{\alpha_1^2}+\frac{1}{\alpha_2^2}+\frac{1}{\alpha_3^2}+\frac{1}{\alpha_4^2}+\frac{1}{\alpha_5^2}$ is equal to

AP EAPCET 2024 - 22th May Evening Shift
4

If $Z$ is a complex number such that $|Z| \leq 3$ and $\frac{-\pi}{2} \leq \operatorname{amp} Z \leq \frac{\pi}{2}$, then the area of the region formed by locus of $Z$ is

AP EAPCET 2024 - 22th May Morning Shift
5
The locus of the complex number $Z$ such that $\arg \left(\frac{Z-1}{Z+1}\right)=\frac{\pi}{4}$ is
AP EAPCET 2024 - 22th May Morning Shift
6
All the values of $(8 i)^{\frac{1}{3}}$ are
AP EAPCET 2024 - 22th May Morning Shift
7
If the number of real roots of $x^9-x^5+x^4-1=0$ is $n$, the number of complex roots having argument on imaginary axis is $m$ and the number of complex roots having argument in 2nd quadrant is $K, m \cdot n \cdot k=$
AP EAPCET 2024 - 22th May Morning Shift
8
Imaginary part of $\frac{(1-i)^3}{(2-i)(3-2 i)}$ is
AP EAPCET 2024 - 21th May Evening Shift
9
The square root of $7+24 i$
AP EAPCET 2024 - 21th May Evening Shift
10
If $n$ is an integer and $Z=\cos \theta+i \sin \theta, \theta \neq(2 n+1) \frac{\pi}{2}$, then $\frac{1+Z^{2 n}}{1-Z^{2 n}}=$
AP EAPCET 2024 - 21th May Evening Shift
11
The complex conjugate of $(4-3 i)(2+3 i)(1+4 i)$ is.
AP EAPCET 2024 - 21th May Morning Shift
12
If the amplitude of $(z-2)$ is $\frac{\pi}{2}$, then the locus of $z$ is
AP EAPCET 2024 - 21th May Morning Shift
13
If $\omega$ is the cube root of unity, $$ \frac{a+b \omega+c \omega^2}{c+a \omega+b \omega^2}+\frac{a+b \omega+c \omega^2}{b+c \omega+b \omega^2}= $$
AP EAPCET 2024 - 21th May Morning Shift
14
If $(3+i)$ is a root of $x^2+a x+b=0$, then $a=$
AP EAPCET 2024 - 21th May Morning Shift
15
If $z_1=10+6 i, z_2=4+6 i$ and $z$ is any complex number such that the argument of $\frac{\left(z-z_1\right)}{\left(z-z_2\right)}$ is $\frac{\pi}{4}$,
AP EAPCET 2024 - 20th May Evening Shift
16
If $\frac{3-2 i \sin \theta}{1+2 i \sin \theta}$ is purely imaginary number, then $\theta=$
AP EAPCET 2024 - 20th May Evening Shift
17
If $z=x+i y, x^2+y^2=1$ and $z_1=z e^{i \theta}$, then $\frac{z_1^{2 n}-1}{z_1^{2 n}+1}=$
AP EAPCET 2024 - 20th May Evening Shift
18
If the point $P$ represents the complex number $z=x+i y$ in the argand plane and if $\frac{z+i}{z-i}$ is a purely imaginary number, then the locus of $P$ is
AP EAPCET 2024 - 20th May Morning Shift
19
$S=\{z \in C /|z+1-i|=1\}$ represents
AP EAPCET 2024 - 20th May Morning Shift
20
If $m, n$ are respectively the least positive and greatest negative integer value of $k$ such that $\left(\frac{1-i}{1+i}\right)^k=-i$, then $m-n=$
AP EAPCET 2024 - 19th May Evening Shift
21
If a complex number $z$ is such that $\frac{z-2 i}{z-2}$ is purely imaginary number and the locus of $z$ is a closed curve, then the area of the region bounded by that closed curve and lying in the first quadrant is $\frac{z-2 i}{z-2}$
AP EAPCET 2024 - 19th May Evening Shift
22
Real part of $\frac{(\cos a+i \sin a)^6}{(\sin b+i \cos b)^8}$ is
AP EAPCET 2024 - 19th May Evening Shift
23
If real parts of $\sqrt{-5-12 i}, \sqrt{5+12 i}$ are positive values, the real part of $\sqrt{-8-6 i}$ is a negative value and $a+i b=\frac{\sqrt{-5-12 i}+\sqrt{5+12 i}}{\sqrt{-8-6 i}}$, then $2 a+b=$
AP EAPCET 2024 - 18th May Morning Shift
24
The set of all real values of $ c $ for which the equation $ z\overline{z} + (4 - 3i)z + (4 + 3i)\overline{z} + c = 0 $ represents a circle, is
AP EAPCET 2024 - 18th May Morning Shift
25
If $ z = x + iy $ is a complex number, then the number of distinct solutions of the equation $ z^3 + \overline{z} = 0 $ is
AP EAPCET 2024 - 18th May Morning Shift
26

By simplifying $$i^{18}-3 i^7+i^2\left(1+i^4\right)(i)^{22}$$, we get

AP EAPCET 2022 - 5th July Morning Shift
27

The values of $$x$$ for which $$\sin x+i \cos 2 x$$ and $$\cos x-i \sin 2 x$$ are conjugate to each other are

AP EAPCET 2022 - 5th July Morning Shift
28

The locus of a point $$z$$ satisfying $$|z|^2=\operatorname{Re}(z)$$ is a circle with centre

AP EAPCET 2022 - 5th July Morning Shift
29

Multiplicative inverse of the complex number $$(\sin \theta, \cos \theta)$$ is

AP EAPCET 2022 - 4th July Evening Shift
30

$$\sum_\limits{k=0}^{440} i^k=x+i y \Rightarrow x^{100}+x^{99} y+x^{242} y^2+x^{97} y^3=$$

AP EAPCET 2022 - 4th July Evening Shift
31

If $$e^{i \theta}=\operatorname{cis} \theta$$, then $$\sum_\limits{n=0}^{\infty} \frac{\cos (n \theta)}{2^n}=$$

AP EAPCET 2022 - 4th July Evening Shift
32

$$i z^3+z^2-z+i=0 \Rightarrow|z|=$$

AP EAPCET 2022 - 4th July Morning Shift
33

If $$\frac{x-1}{3+i}+\frac{y-1}{3-i}=i$$, then the true statement among the following is

AP EAPCET 2022 - 4th July Morning Shift
34

The number of integer solutions of the equation $$|1-i|^x=2^x$$ is

AP EAPCET 2022 - 4th July Morning Shift
35

If $$z_1=2+3 i$$ and $$z_2=3+2 i$$, where $$i=\sqrt{-1}$$, then $$\left[\begin{array}{cc}z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1\end{array}\right]\left[\begin{array}{cc}\bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1\end{array}\right]$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
36

The radius of the circle represented by $$(1+i)(1+3i)(1+7i)=x+iy$$ is $$(i=\sqrt{-1})$$.

AP EAPCET 2021 - 20th August Morning Shift
37

If $$1, \alpha_1, \alpha_2, \alpha_3$$ and $$\alpha_4$$ are the roots of $$z^5-1=0$$ and $$\omega$$ is a cube root of units, then $$(\omega-1)\left(\omega-\alpha_1\right)\left(\omega-\alpha_2\right)\left(\omega-\alpha_3\right)\left(\omega-\alpha_4\right)+\omega$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
38

If $$a > 0$$ and $$z=x+i y$$, then $$\log _{\cos ^2 \theta}|z-a|>\log _{\cos ^2 \theta}|z-a i|,(\theta \in R)$$ implies

AP EAPCET 2021 - 20th August Morning Shift
39

If one root of the equation $$i x^2-2(i+1) x+(2-i)=0$$ is $$(2-i)$$, then the other root is

AP EAPCET 2021 - 20th August Morning Shift
40

If $$|z-2|=|z-1|$$, where $$z$$ is a complex number, then locus $$z$$ is a straight line

AP EAPCET 2021 - 19th August Evening Shift
41

If $${\left( {{{1 + i} \over {1 - i}}} \right)^m} = 1$$, then m cannot be equal to

AP EAPCET 2021 - 19th August Evening Shift
42

$$(\sin \theta-i \cos \theta)^3$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
43

Real part of $$(\cos 4+i \sin 4+1)^{2020}$$ is

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12