Complex Numbers · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
Imaginary part of $\frac{(1-i)^3}{(2-i)(3-2 i)}$ is
AP EAPCET 2024 - 21th May Evening Shift
2
The square root of $7+24 i$
AP EAPCET 2024 - 21th May Evening Shift
3
If $n$ is an integer and $Z=\cos \theta+i \sin \theta, \theta \neq(2 n+1) \frac{\pi}{2}$, then $\frac{1+Z^{2 n}}{1-Z^{2 n}}=$
AP EAPCET 2024 - 21th May Evening Shift
4
The complex conjugate of $(4-3 i)(2+3 i)(1+4 i)$ is.
AP EAPCET 2024 - 21th May Morning Shift
5
If the amplitude of $(z-2)$ is $\frac{\pi}{2}$, then the locus of $z$ is
AP EAPCET 2024 - 21th May Morning Shift
6
If $\omega$ is the cube root of unity, $$ \frac{a+b \omega+c \omega^2}{c+a \omega+b \omega^2}+\frac{a+b \omega+c \omega^2}{b+c \omega+b \omega^2}= $$
AP EAPCET 2024 - 21th May Morning Shift
7
If $(3+i)$ is a root of $x^2+a x+b=0$, then $a=$
AP EAPCET 2024 - 21th May Morning Shift
8
If $z_1=10+6 i, z_2=4+6 i$ and $z$ is any complex number such that the argument of $\frac{\left(z-z_1\right)}{\left(z-z_2\right)}$ is $\frac{\pi}{4}$,
AP EAPCET 2024 - 20th May Evening Shift
9
If $\frac{3-2 i \sin \theta}{1+2 i \sin \theta}$ is purely imaginary number, then $\theta=$
AP EAPCET 2024 - 20th May Evening Shift
10
If $z=x+i y, x^2+y^2=1$ and $z_1=z e^{i \theta}$, then $\frac{z_1^{2 n}-1}{z_1^{2 n}+1}=$
AP EAPCET 2024 - 20th May Evening Shift
11
If the point $P$ represents the complex number $z=x+i y$ in the argand plane and if $\frac{z+i}{z-i}$ is a purely imaginary number, then the locus of $P$ is
AP EAPCET 2024 - 20th May Morning Shift
12
$S=\{z \in C /|z+1-i|=1\}$ represents
AP EAPCET 2024 - 20th May Morning Shift
13
If $m, n$ are respectively the least positive and greatest negative integer value of $k$ such that $\left(\frac{1-i}{1+i}\right)^k=-i$, then $m-n=$
AP EAPCET 2024 - 19th May Evening Shift
14
If a complex number $z$ is such that $\frac{z-2 i}{z-2}$ is purely imaginary number and the locus of $z$ is a closed curve, then the area of the region bounded by that closed curve and lying in the first quadrant is $\frac{z-2 i}{z-2}$
AP EAPCET 2024 - 19th May Evening Shift
15
Real part of $\frac{(\cos a+i \sin a)^6}{(\sin b+i \cos b)^8}$ is
AP EAPCET 2024 - 19th May Evening Shift
16
If real parts of $\sqrt{-5-12 i}, \sqrt{5+12 i}$ are positive values, the real part of $\sqrt{-8-6 i}$ is a negative value and $a+i b=\frac{\sqrt{-5-12 i}+\sqrt{5+12 i}}{\sqrt{-8-6 i}}$, then $2 a+b=$
AP EAPCET 2024 - 18th May Morning Shift
17
The set of all real values of $ c $ for which the equation $ z\overline{z} + (4 - 3i)z + (4 + 3i)\overline{z} + c = 0 $ represents a circle, is
AP EAPCET 2024 - 18th May Morning Shift
18
If $ z = x + iy $ is a complex number, then the number of distinct solutions of the equation $ z^3 + \overline{z} = 0 $ is
AP EAPCET 2024 - 18th May Morning Shift
19

By simplifying $$i^{18}-3 i^7+i^2\left(1+i^4\right)(i)^{22}$$, we get

AP EAPCET 2022 - 5th July Morning Shift
20

The values of $$x$$ for which $$\sin x+i \cos 2 x$$ and $$\cos x-i \sin 2 x$$ are conjugate to each other are

AP EAPCET 2022 - 5th July Morning Shift
21

The locus of a point $$z$$ satisfying $$|z|^2=\operatorname{Re}(z)$$ is a circle with centre

AP EAPCET 2022 - 5th July Morning Shift
22

Multiplicative inverse of the complex number $$(\sin \theta, \cos \theta)$$ is

AP EAPCET 2022 - 4th July Evening Shift
23

$$\sum_\limits{k=0}^{440} i^k=x+i y \Rightarrow x^{100}+x^{99} y+x^{242} y^2+x^{97} y^3=$$

AP EAPCET 2022 - 4th July Evening Shift
24

If $$e^{i \theta}=\operatorname{cis} \theta$$, then $$\sum_\limits{n=0}^{\infty} \frac{\cos (n \theta)}{2^n}=$$

AP EAPCET 2022 - 4th July Evening Shift
25

$$i z^3+z^2-z+i=0 \Rightarrow|z|=$$

AP EAPCET 2022 - 4th July Morning Shift
26

If $$\frac{x-1}{3+i}+\frac{y-1}{3-i}=i$$, then the true statement among the following is

AP EAPCET 2022 - 4th July Morning Shift
27

The number of integer solutions of the equation $$|1-i|^x=2^x$$ is

AP EAPCET 2022 - 4th July Morning Shift
28

If $$z_1=2+3 i$$ and $$z_2=3+2 i$$, where $$i=\sqrt{-1}$$, then $$\left[\begin{array}{cc}z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1\end{array}\right]\left[\begin{array}{cc}\bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1\end{array}\right]$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
29

The radius of the circle represented by $$(1+i)(1+3i)(1+7i)=x+iy$$ is $$(i=\sqrt{-1})$$.

AP EAPCET 2021 - 20th August Morning Shift
30

If $$1, \alpha_1, \alpha_2, \alpha_3$$ and $$\alpha_4$$ are the roots of $$z^5-1=0$$ and $$\omega$$ is a cube root of units, then $$(\omega-1)\left(\omega-\alpha_1\right)\left(\omega-\alpha_2\right)\left(\omega-\alpha_3\right)\left(\omega-\alpha_4\right)+\omega$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
31

If $$a > 0$$ and $$z=x+i y$$, then $$\log _{\cos ^2 \theta}|z-a|>\log _{\cos ^2 \theta}|z-a i|,(\theta \in R)$$ implies

AP EAPCET 2021 - 20th August Morning Shift
32

If one root of the equation $$i x^2-2(i+1) x+(2-i)=0$$ is $$(2-i)$$, then the other root is

AP EAPCET 2021 - 20th August Morning Shift
33

If $$|z-2|=|z-1|$$, where $$z$$ is a complex number, then locus $$z$$ is a straight line

AP EAPCET 2021 - 19th August Evening Shift
34

If $${\left( {{{1 + i} \over {1 - i}}} \right)^m} = 1$$, then m cannot be equal to

AP EAPCET 2021 - 19th August Evening Shift
35

$$(\sin \theta-i \cos \theta)^3$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
36

Real part of $$(\cos 4+i \sin 4+1)^{2020}$$ is

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12