Complex Numbers · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1

By simplifying $$i^{18}-3 i^7+i^2\left(1+i^4\right)(i)^{22}$$, we get

AP EAPCET 2022 - 5th July Morning Shift
2

The values of $$x$$ for which $$\sin x+i \cos 2 x$$ and $$\cos x-i \sin 2 x$$ are conjugate to each other are

AP EAPCET 2022 - 5th July Morning Shift
3

The locus of a point $$z$$ satisfying $$|z|^2=\operatorname{Re}(z)$$ is a circle with centre

AP EAPCET 2022 - 5th July Morning Shift
4

Multiplicative inverse of the complex number $$(\sin \theta, \cos \theta)$$ is

AP EAPCET 2022 - 4th July Evening Shift
5

$$\sum_\limits{k=0}^{440} i^k=x+i y \Rightarrow x^{100}+x^{99} y+x^{242} y^2+x^{97} y^3=$$

AP EAPCET 2022 - 4th July Evening Shift
6

If $$e^{i \theta}=\operatorname{cis} \theta$$, then $$\sum_\limits{n=0}^{\infty} \frac{\cos (n \theta)}{2^n}=$$

AP EAPCET 2022 - 4th July Evening Shift
7

$$i z^3+z^2-z+i=0 \Rightarrow|z|=$$

AP EAPCET 2022 - 4th July Morning Shift
8

If $$\frac{x-1}{3+i}+\frac{y-1}{3-i}=i$$, then the true statement among the following is

AP EAPCET 2022 - 4th July Morning Shift
9

The number of integer solutions of the equation $$|1-i|^x=2^x$$ is

AP EAPCET 2022 - 4th July Morning Shift
10

If $$z_1=2+3 i$$ and $$z_2=3+2 i$$, where $$i=\sqrt{-1}$$, then $$\left[\begin{array}{cc}z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1\end{array}\right]\left[\begin{array}{cc}\bar{z}_1 & -z_2 \\ \bar{z}_2 & z_1\end{array}\right]$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
11

The radius of the circle represented by $$(1+i)(1+3i)(1+7i)=x+iy$$ is $$(i=\sqrt{-1})$$.

AP EAPCET 2021 - 20th August Morning Shift
12

If $$1, \alpha_1, \alpha_2, \alpha_3$$ and $$\alpha_4$$ are the roots of $$z^5-1=0$$ and $$\omega$$ is a cube root of units, then $$(\omega-1)\left(\omega-\alpha_1\right)\left(\omega-\alpha_2\right)\left(\omega-\alpha_3\right)\left(\omega-\alpha_4\right)+\omega$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
13

If $$a > 0$$ and $$z=x+i y$$, then $$\log _{\cos ^2 \theta}|z-a|>\log _{\cos ^2 \theta}|z-a i|,(\theta \in R)$$ implies

AP EAPCET 2021 - 20th August Morning Shift
14

If one root of the equation $$i x^2-2(i+1) x+(2-i)=0$$ is $$(2-i)$$, then the other root is

AP EAPCET 2021 - 20th August Morning Shift
15

If $$|z-2|=|z-1|$$, where $$z$$ is a complex number, then locus $$z$$ is a straight line

AP EAPCET 2021 - 19th August Evening Shift
16

If $${\left( {{{1 + i} \over {1 - i}}} \right)^m} = 1$$, then m cannot be equal to

AP EAPCET 2021 - 19th August Evening Shift
17

$$(\sin \theta-i \cos \theta)^3$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
18

Real part of $$(\cos 4+i \sin 4+1)^{2020}$$ is

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12