Functions · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
The real valued function $f: R \rightarrow\left[\frac{5}{2}, \infty\right)$ defined by $f(x)=|2 x+1|+|x-2|$ is
AP EAPCET 2024 - 21th May Evening Shift
2
If $3 f(x)-2 f(1 / x)=x$, then $f(2)=$
AP EAPCET 2024 - 21th May Evening Shift
3
The domain of the real valued function $f(x)$ $=\log _2 \log _3 \log _5\left(x^2-5 x+11\right)$ is
AP EAPCET 2024 - 21th May Morning Shift
4
The range of the real valued function $f(x)=\left(\frac{x^2+2 x-15}{2 x^2+13 x+15}\right)$ is
AP EAPCET 2024 - 21th May Morning Shift
5
$f: R \rightarrow R$ is defined by $f(x+y)=f(x)+12 y, \forall x, y \in R$. If $f(1)=6$, then $\sum_{r=1}^n f(r)=$
AP EAPCET 2024 - 20th May Evening Shift
6
The domain of the real valued function $f(x)=\sqrt{2+x}+\sqrt{3-x}$ is
AP EAPCET 2024 - 20th May Evening Shift
7
Let $f(x)=3+2 x$ and $g_n(x)=(f \circ f \circ f o \ldots$ in times $)(x)$, $\forall n \in N$ if all the lines $y=g_n(x)$ pass through a fixed point $(\alpha, \beta)$, then $\alpha+\beta=$
AP EAPCET 2024 - 20th May Morning Shift
8

    Let $a > 1$ and $0 < \mathrm{b} < 1$. If $f: R \rightarrow[0,1]$ is defined by $f(x)=\left\{\begin{array}{ll}a^x, & -\infty < x < 0 \\ b^x, & 0 \leq x < \infty\end{array}\right.$, then $f(x)$ is

AP EAPCET 2024 - 20th May Morning Shift
9
If $P(x)=x^5+a x^4+b x^3+c x^2+d x+e$ is a polynomial such that $P(0)=1, P(1)=2, P(2)=5, P(3)=10$ and $P(4)=17$, then $P(5)=$
AP EAPCET 2024 - 20th May Morning Shift
10
If a real valued function $f:[a, \infty) \rightarrow[b, \infty)$ defined by $f(x)=2 x^2-3 x+5$ is a bijection. Then, $3 a+2 b=$
AP EAPCET 2024 - 19th May Evening Shift
11
The domain of the real valued function $f(x)=\frac{1}{\sqrt{\log _{0.5}(2 x-3)}}+\sqrt{4-9 x^2}$ is
AP EAPCET 2024 - 19th May Evening Shift
12
If a function $ f:R \rightarrow R $ is defined by $ f(x) = x^3 - x $, then $ f $ is
AP EAPCET 2024 - 18th May Morning Shift
13
If $ f(x) = \sqrt{x - 1} $ and $ g(f(x)) = x + 2x^2 + 1 $, then $ g(x) $ is
AP EAPCET 2024 - 18th May Morning Shift
14
For real values of $ x $ and $ a $, if the expression $ \frac{x^3 - 3x^2 - 3x + 1}{2x^2 - 3x + 1} $ assumes all real values, then
AP EAPCET 2024 - 18th May Morning Shift
15
$f(x+h)=0$ represents the transformed equation of the equation $f(x)=x^4+2 x^3-19 x^2-8 x+60=0$. If this transformation removes the term containing $x^3$ from $f(x)=0$, then $h=$
AP EAPCET 2024 - 18th May Morning Shift
16

$$f(x)=\log \left(\left(\frac{2 x^2-3}{x}\right)+\sqrt{\frac{4 x^4-11 x^2+9}{|x|}}\right) \text { is }$$

AP EAPCET 2022 - 5th July Morning Shift
17

Let $$f: R-\left\{\frac{-1}{2}\right\} \rightarrow R$$ be defined by $$f(x)=\frac{x-2}{2 x+1}$$. If $$\alpha$$ and $$\beta$$ satisfy the equation $$f(f(x))=-x$$, then $$4\left(\alpha^2+\beta^2\right)=$$

AP EAPCET 2022 - 5th July Morning Shift
18

The domain of the real valued function $$f(x)=\sin \left(\log \left(\frac{\sqrt{4-x^2}}{1-x}\right)\right.$$ is

AP EAPCET 2022 - 4th July Evening Shift
19

The range of the real valued function $$f(x)=\sqrt{\frac{x^2+2 x+8}{x^2+2 x+4}}$$ is

AP EAPCET 2022 - 4th July Morning Shift
20

If $$f(x)=\sqrt{2-x^2}$$ and $$g(x)=\log (1-x)$$ are two real valued functions, then the domain of the function $$(f+g)(x)$$ is

AP EAPCET 2022 - 4th July Morning Shift
21

$$f(x)=\sin x+\cos x \cdot g(x)=x^2-1$$, then $$g(f(x))$$ is invertible if

AP EAPCET 2021 - 20th August Morning Shift
22

If $$f: z \rightarrow z$$ is defined by $$f(x)=x^9-11 x^8-2 x^7+22 x^6+x^4 -12 x^3+11 x^2+x-3, \forall x \in z$$, then $$f(11)$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
23

Let $$f(x)=x^3$$ and $$g(x)=3^x$$, then the quadratic equation whose roots are solutions of the equation $$(f \circ g)(x)=(g \circ f)(x)$$ (for $$x \neq 0$$) is

AP EAPCET 2021 - 20th August Morning Shift
24

The real valued function $$f(x)=\frac{x}{e^x-1}+\frac{x}{2}+1$$ defined on $$R /\{0\}$$ is

AP EAPCET 2021 - 19th August Evening Shift
25

The domain of the function $$f(x)=\frac{1}{[x]-1}$$, where $$[x]$$ is greatest integer function of $$x$$ is

AP EAPCET 2021 - 19th August Evening Shift
26

Let $$f: R \rightarrow R$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$, what is the value of $$f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
27

Let $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ be defined by $$f(x)=2 x+1$$ and $$g(x)=x^2-2$$ determine $$(g \circ f)(x)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
28

Given, the function $$f(x)=\frac{a^x+a^{-x}}{2},(a>2)$$, then $$f(x+y)+f(x-y)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
29

If $$f$$ is a function defined on $$(0,1)$$ by $$f(x)=\min \{x-[x],-x-[x]\}$$, then $$(f \circ f o f o f)(x)$$ is equal to $$\rightarrow([\cdot]$$ greatest integer function)

AP EAPCET 2021 - 19th August Morning Shift
30

If $${({x^2} + 5x + 5)^{x + 5}} = 1$$, then the number of integers satisfying this equation is

AP EAPCET 2021 - 19th August Morning Shift
31

If $$\frac{x^4}{(x-1)(x-2)}=f(x)+\frac{A}{x-1}+\frac{B}{x-2}$$, then

AP EAPCET 2021 - 19th August Morning Shift
32

Which statement among the following is true?

(i) the function $$f(x)=x|x|$$ is strictly increasing on $$R-\{0\}$$.

(ii) the function $$f(x)=\log _{(1 / 4)} x$$ is strictly increasing on $$(0, \infty)$$.

(iii) a one-one function is always an increasing function.

(iv) $$f(x)=x^{1 / 3}$$ is strictly decreasing on $$R$$

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12