Functions · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
$f: R \rightarrow R$ is defined by $f(x+y)=f(x)+12 y, \forall x, y \in R$. If $f(1)=6$, then $\sum_{r=1}^n f(r)=$
AP EAPCET 2024 - 20th May Evening Shift
2
The domain of the real valued function $f(x)=\sqrt{2+x}+\sqrt{3-x}$ is
AP EAPCET 2024 - 20th May Evening Shift
3
Let $f(x)=3+2 x$ and $g_n(x)=(f \circ f \circ f o \ldots$ in times $)(x)$, $\forall n \in N$ if all the lines $y=g_n(x)$ pass through a fixed point $(\alpha, \beta)$, then $\alpha+\beta=$
AP EAPCET 2024 - 20th May Morning Shift
4

    Let $a > 1$ and $0 < \mathrm{b} < 1$. If $f: R \rightarrow[0,1]$ is defined by $f(x)=\left\{\begin{array}{ll}a^x, & -\infty < x < 0 \\ b^x, & 0 \leq x < \infty\end{array}\right.$, then $f(x)$ is

AP EAPCET 2024 - 20th May Morning Shift
5
If $P(x)=x^5+a x^4+b x^3+c x^2+d x+e$ is a polynomial such that $P(0)=1, P(1)=2, P(2)=5, P(3)=10$ and $P(4)=17$, then $P(5)=$
AP EAPCET 2024 - 20th May Morning Shift
6
If a real valued function $f:[a, \infty) \rightarrow[b, \infty)$ defined by $f(x)=2 x^2-3 x+5$ is a bijection. Then, $3 a+2 b=$
AP EAPCET 2024 - 19th May Evening Shift
7
The domain of the real valued function $f(x)=\frac{1}{\sqrt{\log _{0.5}(2 x-3)}}+\sqrt{4-9 x^2}$ is
AP EAPCET 2024 - 19th May Evening Shift
8
If a function $ f:R \rightarrow R $ is defined by $ f(x) = x^3 - x $, then $ f $ is
AP EAPCET 2024 - 18th May Morning Shift
9
If $ f(x) = \sqrt{x - 1} $ and $ g(f(x)) = x + 2x^2 + 1 $, then $ g(x) $ is
AP EAPCET 2024 - 18th May Morning Shift
10
For real values of $ x $ and $ a $, if the expression $ \frac{x^3 - 3x^2 - 3x + 1}{2x^2 - 3x + 1} $ assumes all real values, then
AP EAPCET 2024 - 18th May Morning Shift
11
$f(x+h)=0$ represents the transformed equation of the equation $f(x)=x^4+2 x^3-19 x^2-8 x+60=0$. If this transformation removes the term containing $x^3$ from $f(x)=0$, then $h=$
AP EAPCET 2024 - 18th May Morning Shift
12

$$f(x)=\log \left(\left(\frac{2 x^2-3}{x}\right)+\sqrt{\frac{4 x^4-11 x^2+9}{|x|}}\right) \text { is }$$

AP EAPCET 2022 - 5th July Morning Shift
13

Let $$f: R-\left\{\frac{-1}{2}\right\} \rightarrow R$$ be defined by $$f(x)=\frac{x-2}{2 x+1}$$. If $$\alpha$$ and $$\beta$$ satisfy the equation $$f(f(x))=-x$$, then $$4\left(\alpha^2+\beta^2\right)=$$

AP EAPCET 2022 - 5th July Morning Shift
14

The domain of the real valued function $$f(x)=\sin \left(\log \left(\frac{\sqrt{4-x^2}}{1-x}\right)\right.$$ is

AP EAPCET 2022 - 4th July Evening Shift
15

The range of the real valued function $$f(x)=\sqrt{\frac{x^2+2 x+8}{x^2+2 x+4}}$$ is

AP EAPCET 2022 - 4th July Morning Shift
16

If $$f(x)=\sqrt{2-x^2}$$ and $$g(x)=\log (1-x)$$ are two real valued functions, then the domain of the function $$(f+g)(x)$$ is

AP EAPCET 2022 - 4th July Morning Shift
17

$$f(x)=\sin x+\cos x \cdot g(x)=x^2-1$$, then $$g(f(x))$$ is invertible if

AP EAPCET 2021 - 20th August Morning Shift
18

If $$f: z \rightarrow z$$ is defined by $$f(x)=x^9-11 x^8-2 x^7+22 x^6+x^4 -12 x^3+11 x^2+x-3, \forall x \in z$$, then $$f(11)$$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
19

Let $$f(x)=x^3$$ and $$g(x)=3^x$$, then the quadratic equation whose roots are solutions of the equation $$(f \circ g)(x)=(g \circ f)(x)$$ (for $$x \neq 0$$) is

AP EAPCET 2021 - 20th August Morning Shift
20

The real valued function $$f(x)=\frac{x}{e^x-1}+\frac{x}{2}+1$$ defined on $$R /\{0\}$$ is

AP EAPCET 2021 - 19th August Evening Shift
21

The domain of the function $$f(x)=\frac{1}{[x]-1}$$, where $$[x]$$ is greatest integer function of $$x$$ is

AP EAPCET 2021 - 19th August Evening Shift
22

Let $$f: R \rightarrow R$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$, what is the value of $$f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
23

Let $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ be defined by $$f(x)=2 x+1$$ and $$g(x)=x^2-2$$ determine $$(g \circ f)(x)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
24

Given, the function $$f(x)=\frac{a^x+a^{-x}}{2},(a>2)$$, then $$f(x+y)+f(x-y)$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
25

If $$f$$ is a function defined on $$(0,1)$$ by $$f(x)=\min \{x-[x],-x-[x]\}$$, then $$(f \circ f o f o f)(x)$$ is equal to $$\rightarrow([\cdot]$$ greatest integer function)

AP EAPCET 2021 - 19th August Morning Shift
26

If $${({x^2} + 5x + 5)^{x + 5}} = 1$$, then the number of integers satisfying this equation is

AP EAPCET 2021 - 19th August Morning Shift
27

If $$\frac{x^4}{(x-1)(x-2)}=f(x)+\frac{A}{x-1}+\frac{B}{x-2}$$, then

AP EAPCET 2021 - 19th August Morning Shift
28

Which statement among the following is true?

(i) the function $$f(x)=x|x|$$ is strictly increasing on $$R-\{0\}$$.

(ii) the function $$f(x)=\log _{(1 / 4)} x$$ is strictly increasing on $$(0, \infty)$$.

(iii) a one-one function is always an increasing function.

(iv) $$f(x)=x^{1 / 3}$$ is strictly decreasing on $$R$$

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12