Properties of Triangles · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
In $\triangle A B C, a^2 \sin 2 B+b^2 \sin 2 A$ is equal to
AP EAPCET 2024 - 23th May Morning Shift
2

$$ \text { In } \triangle A B C, \frac{r_2\left(r_1+r_3\right)}{\sqrt{r_1 r_2+r_2 r_3+r_3 r_1}} \text { is equal to } $$

AP EAPCET 2024 - 23th May Morning Shift
3
In $\triangle A B C,\left(r_2+r_3\right) \operatorname{cosec}^2 \frac{A}{2}$ is equal to
AP EAPCET 2024 - 23th May Morning Shift
4
In a $\triangle A B C$, if $a=13, b=14$ and $c=15$, then $r_1=$
AP EAPCET 2024 - 22th May Evening Shift
5

In $a \triangle A B C$ if $r: R: r_2=1: 3: 7$, then $\sin (A+C)+\sin B$ is equal to

AP EAPCET 2024 - 22th May Evening Shift
6

In $\triangle A B C,\left(r_1+r_2\right) \operatorname{cosec}^2 \frac{C}{2}$ is equal to

AP EAPCET 2024 - 22th May Evening Shift
7

In a $\triangle A B C$, if $A, B$ and $C$ are in arithmetic progression and $\cos A+\cos B+\cos C=\frac{1+\sqrt{2}+\sqrt{3}}{2 \sqrt{2}}$, then $\tan A$ :

AP EAPCET 2024 - 22th May Morning Shift
8

    In $\triangle A B C$, if $b+c: c+a: a+b=7: 8: 9$, then the smaller angle (in radians) of that triangle is

AP EAPCET 2024 - 22th May Morning Shift
9
In $\triangle A B C$, if $(a+c)^2=b^2+3 c a$, then $\frac{a+c}{2 R}=$
AP EAPCET 2024 - 22th May Morning Shift
10
In $\triangle A B C$, if $A, B$ and $C$ are in arithmetic progression $\Delta=\frac{\sqrt{3}}{2}$ and $r_1 r_2=r_2 r$, then $R=$
AP EAPCET 2024 - 22th May Morning Shift
11
If 7 and 8 are the length of two sides of a triangle and $a^{\prime}$ is the length of its smallest side. The angles of the triangle are in AP and ' $a$ ' has two values $a_1$ and $a_2$ satisfying this condition. If $a_1 < a_2$, then $2 a_1+3 a_2=$
AP EAPCET 2024 - 21th May Evening Shift
12
In $\triangle A B C$, if $a=13, b=14$ and $\cos \frac{C}{2}=\frac{3}{\sqrt{13}}$, then $2 r_1=$
AP EAPCET 2024 - 21th May Evening Shift
13
In $\triangle A B C$, if $\left(r_2-r_1\right)\left(r_3-r_1\right)=2 r_2 r_3$, then $2(r+R)=$
AP EAPCET 2024 - 21th May Evening Shift
14
In a $\Delta$ if the angles are in the ratio $3: 2: 1$, then the ratio of its sides is
AP EAPCET 2024 - 21th May Morning Shift
15
In a $\triangle A B C$, if $B C=5, C A=6$ and $A B=7$, then the length of the median drawn from $B$ onto $A C$ is
AP EAPCET 2024 - 21th May Morning Shift
16
In $\triangle A B C$, if $A B: B C: C A=6: 4: 5$, then $R: r$ is equal to
AP EAPCET 2024 - 21th May Morning Shift
17
If $(\alpha, \beta)$ is the orthocentre of the triangle with the vertices $(2,2),(5,1),(4,4)$, then $\alpha+\beta=$
AP EAPCET 2024 - 21th May Morning Shift
18
In $\triangle A B C$, if $4 r_1=5 r_2=6 r_3$, then $\sin ^2 \frac{A}{2}+\sin ^2 \frac{B}{2}+\sin ^2 \frac{C}{2}=$
AP EAPCET 2024 - 20th May Evening Shift
19
In $\triangle A B C, r_1 \cot \frac{A}{2}+r_2 \cot \frac{B}{2}+m_3 \cot \frac{C}{2}=$
AP EAPCET 2024 - 20th May Evening Shift
20
In $\triangle A B C, b c-r_2 r_3=$
AP EAPCET 2024 - 20th May Evening Shift
21
If $O(0,0,0), A(3,0,0)$ and $B(0,4,0)$ form a triangle, then the incentre of $\triangle O A B$ is
AP EAPCET 2024 - 20th May Evening Shift
22
In $\triangle A B C$, if $r_1=4, r_2=8$ and $r_3=24$, then $a=$
AP EAPCET 2024 - 20th May Morning Shift
23
Match the items of List I with those of List II (here, $\Delta$ denotes the area of $\triangle A B C$ )
List I List II
(A) $$
\sum \cot A
$$
(i) $$
(a+b+c)^2 \frac{1}{4 \Delta}
$$
(B) $$
\sum \cot \frac{A}{2}
$$
(ii) $$
\left(a^2+b^2+c^2\right) \frac{1}{4 \Delta}
$$
(C) If $\tan A: \tan B: \tan C=1: 2: 3$, then $\sin A: \sin B: \sin C=$ (iii) $$
8: 6: 5
$$
(D) $$
\begin{aligned}
&\text { If } \cot \frac{A}{2}: \cot \frac{B}{2}: \cot \frac{C}{2}=3: 7: 9\\
&\text { then } a: b: c=
\end{aligned}
$$
(iv) $$
12: 5: 13
$$
(v) $$
\sqrt{5}: 2 \sqrt{2}: 3
$$
(vi) $$
4 \Delta
$$
$$ \text { Then, the correct match is } $$
AP EAPCET 2024 - 20th May Morning Shift
24
In a $\triangle A B C$, if $r_1=2 r_2=3 r_3$, then $\sin A: \sin B: \sin C=$
AP EAPCET 2024 - 19th May Evening Shift
25
In $\triangle A B C$, if $B=90^{\circ}$, then $2(r+R)=$
AP EAPCET 2024 - 19th May Evening Shift
26
In a $\triangle A B C$, if $(a-b)(s-c)=(b-c)(s-a)$, then $r_1+r_3=$
AP EAPCET 2024 - 19th May Evening Shift
27
In $\triangle ABC$, $\cos A + \cos B + \cos C = $
AP EAPCET 2024 - 18th May Morning Shift
28
In a $\triangle A B C$, if $a=26, b=30, \cos c=\frac{63}{65}$, then $c=$
AP EAPCET 2024 - 18th May Morning Shift
29
If $H$ is orthocentre of $\triangle A B C$ and $A H=x ; B H=y$; $C H=z$, then $\frac{a b c}{x y z}=$
AP EAPCET 2024 - 18th May Morning Shift
30

In any $$\triangle A B C, \frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=$$

AP EAPCET 2022 - 5th July Morning Shift
31

In a $$\triangle A B C$$, if $$r_1=36, r_2=18$$ and $$r_3=12$$, then $$s=$$

AP EAPCET 2022 - 5th July Morning Shift
32

In a $$\triangle A B C, a=6, b=5$$ and $$c=4$$, then $$\cos 2 A=$$

AP EAPCET 2022 - 5th July Morning Shift
33

In a $$\triangle A B C,\left(\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}\right)^2 \leq$$

AP EAPCET 2022 - 4th July Evening Shift
34

In a $$\triangle A B C, 2(b c \cos A+a c \cos B+a b \cos C)=$$

AP EAPCET 2022 - 4th July Evening Shift
35

In a $$\triangle A B C, \frac{a}{b}=2+\sqrt{3}$$ and $$\angle C=60^{\circ}$$. Then, the measure of $$\angle A$$ is

AP EAPCET 2022 - 4th July Evening Shift
36

If $$a=2, b=3, c=4$$ in a $$\triangle A B C$$, then $$\cos C=$$

AP EAPCET 2022 - 4th July Evening Shift
37

In a $$\triangle A B C$$ $$(b+c) \cos A+(c+a) \cos B+(a+b) \cos C=$$

AP EAPCET 2022 - 4th July Evening Shift
38

Suppose $$\triangle A B C$$ is an isosceles triangle with $$\angle C=90^{\circ}, A=(2,3)$$ and $$B=(4,5)$$. Then, the centroid of the triangle is

AP EAPCET 2022 - 4th July Evening Shift
39

In a $$\triangle A B C$$, if $$a \neq b, \frac{a \cos A-b \cos B}{a \cos B-b \cos A}+\cos C=$$

AP EAPCET 2022 - 4th July Morning Shift
40

If in a $$\triangle A B C, a=2, b=3$$ and $$c=4$$, then $$\tan (A / 2)=$$

AP EAPCET 2022 - 4th July Morning Shift
41

If the angles of a $$\triangle A B C$$ are in the ratio $$1: 2: 3$$, then the corresponding sides are in the ratio

AP EAPCET 2022 - 4th July Morning Shift
42

In a $$\triangle A B C, r_1 \cot \frac{A}{2}+r_2 \cot \frac{B}{2}+r_3 \cot \frac{C}{2}=$$

AP EAPCET 2022 - 4th July Morning Shift
43

In $$\triangle A B C$$, medians $$A D$$ and $$B E$$ are drawn. If $$A D=4, \angle D A B=\frac{\pi}{6}$$ and $$\angle A B E=\frac{\pi}{3}$$, then the area of $$\triangle A B C$$ is

AP EAPCET 2021 - 20th August Morning Shift
44

In a $$\triangle A B C, 2 \Delta^2=\frac{a^2 b^2 c^2}{a^2+b^2+c^2}$$, then the triangle is

AP EAPCET 2021 - 20th August Morning Shift
45

In $$\triangle A B C$$, suppose the radius of the circle opposite to an angle $$A$$ is denoted by $$r_1$$, similarly $$r_2 \leftrightarrow$$ angle $$B, r_3 \leftrightarrow$$ angle $$C$$. If $$r_1=2, r_2=3, r_3=6$$, what is the value of $$r_1+r_2+r_3-r=$$ (R - radius of the circum circle).

AP EAPCET 2021 - 19th August Evening Shift
46

In a $$\Delta ABC$$, if a = 3, b = 4 and $$\sin A=\frac{3}{4}$$, then $$\angle CBA$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
47

In $$\Delta ABC,A=75\Upsilon$$ and $$B=45\Upsilon$$, then the value of $$b+c\sqrt2$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
48

In $$\triangle A B C$$, suppose the radius of the circle opposite to an $$\angle A$$ is denoted by $$r_1$$, similarly $$r_2 \leftrightarrow \angle B$$ and $$r_3 \leftrightarrow \angle C$$. If $$r$$ is the radius of inscribed circle, then, what is the value of $$\frac{a b-r_1 r_2}{r_3}$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
49

If D, E and F are respectively mid-points of AB, AC and BC in $$\Delta ABC$$, then BE + AF is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12