Definite Integration · Mathematics · AP EAPCET
Start PracticeMCQ (Single Correct Answer)
AP EAPCET 2022 - 5th July Morning Shift
Let $$T>0$$ be a fixed number. $$f: R \rightarrow R$$ is a continuous function such that $$f(x+T)=f(x), x \in R$$
If $$I=\int_\limits0^T f(x) d x$$, t...
AP EAPCET 2022 - 5th July Morning Shift
$$\int_\limits1^3 x^n \sqrt{x^2-1} d x=6 \text {, then } n=$$
AP EAPCET 2022 - 5th July Morning Shift
[ . ] represents greatest integer function, then $$\int_{-1}^1(x[1+\sin \pi x]+1) d x=$$
AP EAPCET 2022 - 5th July Morning Shift
$$\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\frac{n}{(n+1) \sqrt{2 n+1}}+\frac{n}{(n+2) \sqrt{2(2 n+2)}}\right. \\
& \left.+\frac{n}{(n+3) \...
AP EAPCET 2022 - 4th July Evening Shift
If $$I_n=\int_0^{\pi / 4} \tan ^n x d x$$, then $$\frac{1}{I_2+I_4}+\frac{1}{I_3+I_5}+\frac{1}{I_4+I_6}=$$
AP EAPCET 2022 - 4th July Evening Shift
$$\int_0^{\pi / 4} e^{\tan ^2 \theta} \sin ^2 \theta \tan \theta d \theta=$$
AP EAPCET 2022 - 4th July Evening Shift
$$\int_{\pi / 4}^{5 \pi / 4}(|\cos t| \sin t+|\sin t| \cos t) d t=$$
AP EAPCET 2022 - 4th July Evening Shift
If $$f(x)=\max \{\sin x, \cos x\}$$ and $$g(x)=\min \{\sin x, \cos x\}$$, then $$\int_0^\pi f(x) d x+\int_0^\pi g(x) d x=$$
AP EAPCET 2022 - 4th July Morning Shift
$$\int_0^1 a^k x^k d x=$$
AP EAPCET 2022 - 4th July Morning Shift
Let $$\alpha$$ and $$\beta(\alpha...
AP EAPCET 2022 - 4th July Morning Shift
$$\int_0^\pi x\left(\sin ^2(\sin x)+\cos ^2(\cos x)\right) d x=$$
AP EAPCET 2021 - 20th August Morning Shift
If $$\int_0^a {{{dx} \over {4 + {x^2}}} = {\pi \over 8}} $$, then the value of a is equal to
AP EAPCET 2021 - 20th August Morning Shift
$$\int_1^2 {{{{x^3} - 1} \over {{x^2}}}} $$ is equal to
AP EAPCET 2021 - 19th August Evening Shift
If $$\int_0^{\pi / 2} \tan ^n(x) d x=k \int_0^{\pi / 2} \cot ^n(x) d x$$, then
AP EAPCET 2021 - 19th August Evening Shift
$$\int_0^2 x e^x d x$$ is equal to
AP EAPCET 2021 - 19th August Morning Shift
$$\int_2^4\{|x-2|+|x-3|\} d x$$ is equal to
AP EAPCET 2021 - 19th August Morning Shift
$$\int\limits_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x$$ is equal to