Definite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

AP EAPCET 2022 - 5th July Morning Shift
Let $$T>0$$ be a fixed number. $$f: R \rightarrow R$$ is a continuous function such that $$f(x+T)=f(x), x \in R$$ If $$I=\int_\limits0^T f(x) d x$$, t...
AP EAPCET 2022 - 5th July Morning Shift
$$\int_\limits1^3 x^n \sqrt{x^2-1} d x=6 \text {, then } n=$$
AP EAPCET 2022 - 5th July Morning Shift
[ . ] represents greatest integer function, then $$\int_{-1}^1(x[1+\sin \pi x]+1) d x=$$
AP EAPCET 2022 - 5th July Morning Shift
$$\begin{aligned} & \lim _{n \rightarrow \infty}\left[\frac{n}{(n+1) \sqrt{2 n+1}}+\frac{n}{(n+2) \sqrt{2(2 n+2)}}\right. \\ & \left.+\frac{n}{(n+3) \...
AP EAPCET 2022 - 4th July Evening Shift
If $$I_n=\int_0^{\pi / 4} \tan ^n x d x$$, then $$\frac{1}{I_2+I_4}+\frac{1}{I_3+I_5}+\frac{1}{I_4+I_6}=$$
AP EAPCET 2022 - 4th July Evening Shift
$$\int_0^{\pi / 4} e^{\tan ^2 \theta} \sin ^2 \theta \tan \theta d \theta=$$
AP EAPCET 2022 - 4th July Evening Shift
$$\int_{\pi / 4}^{5 \pi / 4}(|\cos t| \sin t+|\sin t| \cos t) d t=$$
AP EAPCET 2022 - 4th July Evening Shift
If $$f(x)=\max \{\sin x, \cos x\}$$ and $$g(x)=\min \{\sin x, \cos x\}$$, then $$\int_0^\pi f(x) d x+\int_0^\pi g(x) d x=$$
AP EAPCET 2022 - 4th July Morning Shift
$$\int_0^1 a^k x^k d x=$$
AP EAPCET 2022 - 4th July Morning Shift
Let $$\alpha$$ and $$\beta(\alpha...
AP EAPCET 2022 - 4th July Morning Shift
$$\int_0^\pi x\left(\sin ^2(\sin x)+\cos ^2(\cos x)\right) d x=$$
AP EAPCET 2021 - 20th August Morning Shift
If $$\int_0^a {{{dx} \over {4 + {x^2}}} = {\pi \over 8}} $$, then the value of a is equal to
AP EAPCET 2021 - 20th August Morning Shift
$$\int_1^2 {{{{x^3} - 1} \over {{x^2}}}} $$ is equal to
AP EAPCET 2021 - 19th August Evening Shift
If $$\int_0^{\pi / 2} \tan ^n(x) d x=k \int_0^{\pi / 2} \cot ^n(x) d x$$, then
AP EAPCET 2021 - 19th August Evening Shift
$$\int_0^2 x e^x d x$$ is equal to
AP EAPCET 2021 - 19th August Morning Shift
$$\int_2^4\{|x-2|+|x-3|\} d x$$ is equal to
AP EAPCET 2021 - 19th August Morning Shift
$$\int\limits_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x$$ is equal to
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12