Definite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
$\int_0^1 \sqrt{\frac{2+x}{2-x}} d x$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
2
If $M=\int\limits_0^{\infty} \frac{\log t}{1+t^3} d t$ and $N=\int\limits_{-\infty}^{\infty} \frac{t e^{2 t}}{1+e^{3 t}} d t$, then
AP EAPCET 2024 - 22th May Evening Shift
3
$\int\limits_{-2}^2\left(4-x^2\right)^{\frac{5}{2}} d x$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
4

$$ \mathop {\lim }\limits_{x \to \infty }\left[\left(1+\frac{1}{n^3}\right)^{\frac{1}{n^3}}\left(1+\frac{8}{n^3}\right)^{\frac{4}{n^3}}\left(1+\frac{27}{n^3}\right)^{\frac{9}{n^3}} \ldots . .(2)^{\frac{1}{n}}\right] \text { is equaln } $$

AP EAPCET 2024 - 22th May Evening Shift
5
$\int\limits_{-5 \pi}^{5 \pi}(1-\cos 2 x)^{\frac{5}{2}} d x$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
6

$$ \int_0^{\pi / 4} \log (1+\tan x) d x= $$

AP EAPCET 2024 - 22th May Morning Shift
7

$$\int\limits_\pi ^\pi {}\frac{x \sin x}{1+\cos ^2 x} d x= $$

AP EAPCET 2024 - 22th May Morning Shift
8
$$\int\limits_0^{\pi /4} {{{{x^2}} \over {{{(x\,\sin \,x + \cos \,x)}^2}}}dx = } $$
AP EAPCET 2024 - 21th May Evening Shift
9
$\int_0^1 \frac{x}{(1-x)^{\frac{3}{4}}} d x=$
AP EAPCET 2024 - 21th May Evening Shift
10

$$ \int_{-1}^1\left(\sqrt{1+x+x^2}-\sqrt{1-x+x^2}\right) d x= $$

AP EAPCET 2024 - 21th May Evening Shift
11
$\int_1^5(|x-3|+|1-x|) d x=$
AP EAPCET 2024 - 21th May Evening Shift
12
If $729 \int_1^3 \frac{1}{x^3\left(x^2+9\right)^2} d x=a+\log b$, then $(a-b)=$
AP EAPCET 2024 - 21th May Morning Shift
13
$\lim \limits_{n \rightarrow \infty} \frac{1^{17}+2^{77}+\ldots+n^{77}}{n^{78}}=$
AP EAPCET 2024 - 21th May Morning Shift
14

$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{6 x^2+1}{4 x^3+2 x+3} & , 0 < x < 1 \\ x^2+1 & , 1 \leq x < 2 \end{array} \text {, then } \int_0^2 f(x) d x=\right. $$

AP EAPCET 2024 - 21th May Morning Shift
15
If $\int_1^n[x] d x=120$, then $n=$
AP EAPCET 2024 - 21th May Morning Shift
16
$\int\limits_{\frac{-1}{24}}^{\frac{1}{24}} \sec x \log \left(\frac{1-x}{1+x}\right) d x=$
AP EAPCET 2024 - 20th May Evening Shift
17
If $[x]$ is the greatest integer function, then $\int_0^5[x] d x=$
AP EAPCET 2024 - 20th May Evening Shift
18
$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\tan x}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
19
$\int_0^\pi \frac{x \sin x}{1+\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Evening Shift
20
$\int_{-\pi}^\pi \frac{x \sin ^3 x}{4-\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Morning Shift
21

$$ \text { } \int\limits_{-3}^3|2-x| d x= $$

AP EAPCET 2024 - 20th May Morning Shift
22

$$ \int_{\frac{1}{\sqrt[5]{31}}}^{\frac{1}{\sqrt[5]{242}}} \frac{1}{\sqrt[5]{x^{30}+x^{25}}} d x= $$

AP EAPCET 2024 - 20th May Morning Shift
23
If $\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots\left(1+\frac{n^2}{n^2}\right)\right]^{\frac{1}{n}}=a e^b$, then $$ a+b= $$
AP EAPCET 2024 - 19th May Evening Shift
24
$$ \int_0^\pi x \sin ^4 x \cos ^6 x d x= $$
AP EAPCET 2024 - 19th May Evening Shift
25
If $I_n=\int_0^{\frac{\pi}{4}} \tan ^n x d x$, then $I_{13}+I_{11}=$
AP EAPCET 2024 - 19th May Evening Shift
26
$\lim \limits_{n \rightarrow+\infty}\left[{\frac{1}{n^4}+\frac{1}{\left(n^2+1\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+4\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+9\right)^{\frac{3}{2}}}}{+\ldots \ldots+\frac{1}{4 \sqrt{2} n^5}}\right]=$
AP EAPCET 2024 - 18th May Morning Shift
27
$\int_{\log 4}^{\log 4} \frac{e^{2 x}+e^x}{e^{2 r}-5 e^x+6} d x=$
AP EAPCET 2024 - 18th May Morning Shift
28
$\int_1^2 \frac{x^4-1}{x^6-1} d x=$
AP EAPCET 2024 - 18th May Morning Shift
29

Let $$T>0$$ be a fixed number. $$f: R \rightarrow R$$ is a continuous function such that $$f(x+T)=f(x), x \in R$$ If $$I=\int_\limits0^T f(x) d x$$, then $$\int_\limits0^{5 T} f(2 x) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
30

$$\int_\limits1^3 x^n \sqrt{x^2-1} d x=6 \text {, then } n=$$

AP EAPCET 2022 - 5th July Morning Shift
31

[ . ] represents greatest integer function, then $$\int_{-1}^1(x[1+\sin \pi x]+1) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
32

$$\begin{aligned} & \lim _{n \rightarrow \infty}\left[\frac{n}{(n+1) \sqrt{2 n+1}}+\frac{n}{(n+2) \sqrt{2(2 n+2)}}\right. \\ & \left.+\frac{n}{(n+3) \sqrt{3(2 n+3)}}+\ldots n \text { terms }\right]=\int_\limits0^1 f(x) d x \end{aligned}$$

then $$f(x)=$$

AP EAPCET 2022 - 5th July Morning Shift
33

If $$I_n=\int_0^{\pi / 4} \tan ^n x d x$$, then $$\frac{1}{I_2+I_4}+\frac{1}{I_3+I_5}+\frac{1}{I_4+I_6}=$$

AP EAPCET 2022 - 4th July Evening Shift
34

$$\int_0^{\pi / 4} e^{\tan ^2 \theta} \sin ^2 \theta \tan \theta d \theta=$$

AP EAPCET 2022 - 4th July Evening Shift
35

$$\int_{\pi / 4}^{5 \pi / 4}(|\cos t| \sin t+|\sin t| \cos t) d t=$$

AP EAPCET 2022 - 4th July Evening Shift
36

If $$f(x)=\max \{\sin x, \cos x\}$$ and $$g(x)=\min \{\sin x, \cos x\}$$, then $$\int_0^\pi f(x) d x+\int_0^\pi g(x) d x=$$

AP EAPCET 2022 - 4th July Evening Shift
37

$$\int_0^1 a^k x^k d x=$$

AP EAPCET 2022 - 4th July Morning Shift
38

Let $$\alpha$$ and $$\beta(\alpha<\beta)$$ are roots of $$18 x^2-9 \pi x+\pi^2=0, f(x)=x^2, g(x)=\cos x$$. Then, $$\int_\alpha^\beta x(g \circ f(x)) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
39

$$\int_0^\pi x\left(\sin ^2(\sin x)+\cos ^2(\cos x)\right) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
40

If $$\int_0^a {{{dx} \over {4 + {x^2}}} = {\pi \over 8}} $$, then the value of a is equal to

AP EAPCET 2021 - 20th August Morning Shift
41

$$\int_1^2 {{{{x^3} - 1} \over {{x^2}}}} $$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
42

If $$\int_0^{\pi / 2} \tan ^n(x) d x=k \int_0^{\pi / 2} \cot ^n(x) d x$$, then

AP EAPCET 2021 - 19th August Evening Shift
43

$$\int_0^2 x e^x d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
44

$$\int_2^4\{|x-2|+|x-3|\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
45

$$\int\limits_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12