Definite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1

$$ \int_0^{\pi / 4} \log (1+\tan x) d x= $$

AP EAPCET 2024 - 22th May Morning Shift
2

$$\int\limits_\pi ^\pi {}\frac{x \sin x}{1+\cos ^2 x} d x= $$

AP EAPCET 2024 - 22th May Morning Shift
3
$$\int\limits_0^{\pi /4} {{{{x^2}} \over {{{(x\,\sin \,x + \cos \,x)}^2}}}dx = } $$
AP EAPCET 2024 - 21th May Evening Shift
4
$\int_0^1 \frac{x}{(1-x)^{\frac{3}{4}}} d x=$
AP EAPCET 2024 - 21th May Evening Shift
5

$$ \int_{-1}^1\left(\sqrt{1+x+x^2}-\sqrt{1-x+x^2}\right) d x= $$

AP EAPCET 2024 - 21th May Evening Shift
6
$\int_1^5(|x-3|+|1-x|) d x=$
AP EAPCET 2024 - 21th May Evening Shift
7
If $729 \int_1^3 \frac{1}{x^3\left(x^2+9\right)^2} d x=a+\log b$, then $(a-b)=$
AP EAPCET 2024 - 21th May Morning Shift
8
$\lim \limits_{n \rightarrow \infty} \frac{1^{17}+2^{77}+\ldots+n^{77}}{n^{78}}=$
AP EAPCET 2024 - 21th May Morning Shift
9

$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{6 x^2+1}{4 x^3+2 x+3} & , 0 < x < 1 \\ x^2+1 & , 1 \leq x < 2 \end{array} \text {, then } \int_0^2 f(x) d x=\right. $$

AP EAPCET 2024 - 21th May Morning Shift
10
If $\int_1^n[x] d x=120$, then $n=$
AP EAPCET 2024 - 21th May Morning Shift
11
$\int\limits_{\frac{-1}{24}}^{\frac{1}{24}} \sec x \log \left(\frac{1-x}{1+x}\right) d x=$
AP EAPCET 2024 - 20th May Evening Shift
12
If $[x]$ is the greatest integer function, then $\int_0^5[x] d x=$
AP EAPCET 2024 - 20th May Evening Shift
13
$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\tan x}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
14
$\int_0^\pi \frac{x \sin x}{1+\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Evening Shift
15
$\int_{-\pi}^\pi \frac{x \sin ^3 x}{4-\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Morning Shift
16

$$ \text { } \int\limits_{-3}^3|2-x| d x= $$

AP EAPCET 2024 - 20th May Morning Shift
17

$$ \int_{\frac{1}{\sqrt[5]{31}}}^{\frac{1}{\sqrt[5]{242}}} \frac{1}{\sqrt[5]{x^{30}+x^{25}}} d x= $$

AP EAPCET 2024 - 20th May Morning Shift
18
If $\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots\left(1+\frac{n^2}{n^2}\right)\right]^{\frac{1}{n}}=a e^b$, then $$ a+b= $$
AP EAPCET 2024 - 19th May Evening Shift
19
$$ \int_0^\pi x \sin ^4 x \cos ^6 x d x= $$
AP EAPCET 2024 - 19th May Evening Shift
20
If $I_n=\int_0^{\frac{\pi}{4}} \tan ^n x d x$, then $I_{13}+I_{11}=$
AP EAPCET 2024 - 19th May Evening Shift
21
$\lim \limits_{n \rightarrow+\infty}\left[{\frac{1}{n^4}+\frac{1}{\left(n^2+1\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+4\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+9\right)^{\frac{3}{2}}}}{+\ldots \ldots+\frac{1}{4 \sqrt{2} n^5}}\right]=$
AP EAPCET 2024 - 18th May Morning Shift
22
$\int_{\log 4}^{\log 4} \frac{e^{2 x}+e^x}{e^{2 r}-5 e^x+6} d x=$
AP EAPCET 2024 - 18th May Morning Shift
23
$\int_1^2 \frac{x^4-1}{x^6-1} d x=$
AP EAPCET 2024 - 18th May Morning Shift
24

Let $$T>0$$ be a fixed number. $$f: R \rightarrow R$$ is a continuous function such that $$f(x+T)=f(x), x \in R$$ If $$I=\int_\limits0^T f(x) d x$$, then $$\int_\limits0^{5 T} f(2 x) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
25

$$\int_\limits1^3 x^n \sqrt{x^2-1} d x=6 \text {, then } n=$$

AP EAPCET 2022 - 5th July Morning Shift
26

[ . ] represents greatest integer function, then $$\int_{-1}^1(x[1+\sin \pi x]+1) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
27

$$\begin{aligned} & \lim _{n \rightarrow \infty}\left[\frac{n}{(n+1) \sqrt{2 n+1}}+\frac{n}{(n+2) \sqrt{2(2 n+2)}}\right. \\ & \left.+\frac{n}{(n+3) \sqrt{3(2 n+3)}}+\ldots n \text { terms }\right]=\int_\limits0^1 f(x) d x \end{aligned}$$

then $$f(x)=$$

AP EAPCET 2022 - 5th July Morning Shift
28

If $$I_n=\int_0^{\pi / 4} \tan ^n x d x$$, then $$\frac{1}{I_2+I_4}+\frac{1}{I_3+I_5}+\frac{1}{I_4+I_6}=$$

AP EAPCET 2022 - 4th July Evening Shift
29

$$\int_0^{\pi / 4} e^{\tan ^2 \theta} \sin ^2 \theta \tan \theta d \theta=$$

AP EAPCET 2022 - 4th July Evening Shift
30

$$\int_{\pi / 4}^{5 \pi / 4}(|\cos t| \sin t+|\sin t| \cos t) d t=$$

AP EAPCET 2022 - 4th July Evening Shift
31

If $$f(x)=\max \{\sin x, \cos x\}$$ and $$g(x)=\min \{\sin x, \cos x\}$$, then $$\int_0^\pi f(x) d x+\int_0^\pi g(x) d x=$$

AP EAPCET 2022 - 4th July Evening Shift
32

$$\int_0^1 a^k x^k d x=$$

AP EAPCET 2022 - 4th July Morning Shift
33

Let $$\alpha$$ and $$\beta(\alpha<\beta)$$ are roots of $$18 x^2-9 \pi x+\pi^2=0, f(x)=x^2, g(x)=\cos x$$. Then, $$\int_\alpha^\beta x(g \circ f(x)) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
34

$$\int_0^\pi x\left(\sin ^2(\sin x)+\cos ^2(\cos x)\right) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
35

If $$\int_0^a {{{dx} \over {4 + {x^2}}} = {\pi \over 8}} $$, then the value of a is equal to

AP EAPCET 2021 - 20th August Morning Shift
36

$$\int_1^2 {{{{x^3} - 1} \over {{x^2}}}} $$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
37

If $$\int_0^{\pi / 2} \tan ^n(x) d x=k \int_0^{\pi / 2} \cot ^n(x) d x$$, then

AP EAPCET 2021 - 19th August Evening Shift
38

$$\int_0^2 x e^x d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
39

$$\int_2^4\{|x-2|+|x-3|\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
40

$$\int\limits_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12