Definite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
$\int\limits_{\frac{-1}{24}}^{\frac{1}{24}} \sec x \log \left(\frac{1-x}{1+x}\right) d x=$
AP EAPCET 2024 - 20th May Evening Shift
2
If $[x]$ is the greatest integer function, then $\int_0^5[x] d x=$
AP EAPCET 2024 - 20th May Evening Shift
3
$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\tan x}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
4
$\int_0^\pi \frac{x \sin x}{1+\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Evening Shift
5
$\int_{-\pi}^\pi \frac{x \sin ^3 x}{4-\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Morning Shift
6

$$ \text { } \int\limits_{-3}^3|2-x| d x= $$

AP EAPCET 2024 - 20th May Morning Shift
7

$$ \int_{\frac{1}{\sqrt[5]{31}}}^{\frac{1}{\sqrt[5]{242}}} \frac{1}{\sqrt[5]{x^{30}+x^{25}}} d x= $$

AP EAPCET 2024 - 20th May Morning Shift
8
If $\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots\left(1+\frac{n^2}{n^2}\right)\right]^{\frac{1}{n}}=a e^b$, then $$ a+b= $$
AP EAPCET 2024 - 19th May Evening Shift
9
$$ \int_0^\pi x \sin ^4 x \cos ^6 x d x= $$
AP EAPCET 2024 - 19th May Evening Shift
10
If $I_n=\int_0^{\frac{\pi}{4}} \tan ^n x d x$, then $I_{13}+I_{11}=$
AP EAPCET 2024 - 19th May Evening Shift
11
$\lim \limits_{n \rightarrow+\infty}\left[{\frac{1}{n^4}+\frac{1}{\left(n^2+1\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+4\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+9\right)^{\frac{3}{2}}}}{+\ldots \ldots+\frac{1}{4 \sqrt{2} n^5}}\right]=$
AP EAPCET 2024 - 18th May Morning Shift
12
$\int_{\log 4}^{\log 4} \frac{e^{2 x}+e^x}{e^{2 r}-5 e^x+6} d x=$
AP EAPCET 2024 - 18th May Morning Shift
13
$\int_1^2 \frac{x^4-1}{x^6-1} d x=$
AP EAPCET 2024 - 18th May Morning Shift
14

Let $$T>0$$ be a fixed number. $$f: R \rightarrow R$$ is a continuous function such that $$f(x+T)=f(x), x \in R$$ If $$I=\int_\limits0^T f(x) d x$$, then $$\int_\limits0^{5 T} f(2 x) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
15

$$\int_\limits1^3 x^n \sqrt{x^2-1} d x=6 \text {, then } n=$$

AP EAPCET 2022 - 5th July Morning Shift
16

[ . ] represents greatest integer function, then $$\int_{-1}^1(x[1+\sin \pi x]+1) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
17

$$\begin{aligned} & \lim _{n \rightarrow \infty}\left[\frac{n}{(n+1) \sqrt{2 n+1}}+\frac{n}{(n+2) \sqrt{2(2 n+2)}}\right. \\ & \left.+\frac{n}{(n+3) \sqrt{3(2 n+3)}}+\ldots n \text { terms }\right]=\int_\limits0^1 f(x) d x \end{aligned}$$

then $$f(x)=$$

AP EAPCET 2022 - 5th July Morning Shift
18

If $$I_n=\int_0^{\pi / 4} \tan ^n x d x$$, then $$\frac{1}{I_2+I_4}+\frac{1}{I_3+I_5}+\frac{1}{I_4+I_6}=$$

AP EAPCET 2022 - 4th July Evening Shift
19

$$\int_0^{\pi / 4} e^{\tan ^2 \theta} \sin ^2 \theta \tan \theta d \theta=$$

AP EAPCET 2022 - 4th July Evening Shift
20

$$\int_{\pi / 4}^{5 \pi / 4}(|\cos t| \sin t+|\sin t| \cos t) d t=$$

AP EAPCET 2022 - 4th July Evening Shift
21

If $$f(x)=\max \{\sin x, \cos x\}$$ and $$g(x)=\min \{\sin x, \cos x\}$$, then $$\int_0^\pi f(x) d x+\int_0^\pi g(x) d x=$$

AP EAPCET 2022 - 4th July Evening Shift
22

$$\int_0^1 a^k x^k d x=$$

AP EAPCET 2022 - 4th July Morning Shift
23

Let $$\alpha$$ and $$\beta(\alpha<\beta)$$ are roots of $$18 x^2-9 \pi x+\pi^2=0, f(x)=x^2, g(x)=\cos x$$. Then, $$\int_\alpha^\beta x(g \circ f(x)) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
24

$$\int_0^\pi x\left(\sin ^2(\sin x)+\cos ^2(\cos x)\right) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
25

If $$\int_0^a {{{dx} \over {4 + {x^2}}} = {\pi \over 8}} $$, then the value of a is equal to

AP EAPCET 2021 - 20th August Morning Shift
26

$$\int_1^2 {{{{x^3} - 1} \over {{x^2}}}} $$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
27

If $$\int_0^{\pi / 2} \tan ^n(x) d x=k \int_0^{\pi / 2} \cot ^n(x) d x$$, then

AP EAPCET 2021 - 19th August Evening Shift
28

$$\int_0^2 x e^x d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
29

$$\int_2^4\{|x-2|+|x-3|\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
30

$$\int\limits_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12