Definite Integration · Mathematics · AP EAPCET

Start Practice

MCQ (Single Correct Answer)

1
If $729 \int_1^3 \frac{1}{x^3\left(x^2+9\right)^2} d x=a+\log b$, then $(a-b)=$
AP EAPCET 2024 - 21th May Morning Shift
2
$\lim \limits_{n \rightarrow \infty} \frac{1^{17}+2^{77}+\ldots+n^{77}}{n^{78}}=$
AP EAPCET 2024 - 21th May Morning Shift
3

$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{6 x^2+1}{4 x^3+2 x+3} & , 0 < x < 1 \\ x^2+1 & , 1 \leq x < 2 \end{array} \text {, then } \int_0^2 f(x) d x=\right. $$

AP EAPCET 2024 - 21th May Morning Shift
4
If $\int_1^n[x] d x=120$, then $n=$
AP EAPCET 2024 - 21th May Morning Shift
5
$\int\limits_{\frac{-1}{24}}^{\frac{1}{24}} \sec x \log \left(\frac{1-x}{1+x}\right) d x=$
AP EAPCET 2024 - 20th May Evening Shift
6
If $[x]$ is the greatest integer function, then $\int_0^5[x] d x=$
AP EAPCET 2024 - 20th May Evening Shift
7
$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\tan x}} d x=$
AP EAPCET 2024 - 20th May Evening Shift
8
$\int_0^\pi \frac{x \sin x}{1+\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Evening Shift
9
$\int_{-\pi}^\pi \frac{x \sin ^3 x}{4-\cos ^2 x} d x=$
AP EAPCET 2024 - 20th May Morning Shift
10

$$ \text { } \int\limits_{-3}^3|2-x| d x= $$

AP EAPCET 2024 - 20th May Morning Shift
11

$$ \int_{\frac{1}{\sqrt[5]{31}}}^{\frac{1}{\sqrt[5]{242}}} \frac{1}{\sqrt[5]{x^{30}+x^{25}}} d x= $$

AP EAPCET 2024 - 20th May Morning Shift
12
If $\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots\left(1+\frac{n^2}{n^2}\right)\right]^{\frac{1}{n}}=a e^b$, then $$ a+b= $$
AP EAPCET 2024 - 19th May Evening Shift
13
$$ \int_0^\pi x \sin ^4 x \cos ^6 x d x= $$
AP EAPCET 2024 - 19th May Evening Shift
14
If $I_n=\int_0^{\frac{\pi}{4}} \tan ^n x d x$, then $I_{13}+I_{11}=$
AP EAPCET 2024 - 19th May Evening Shift
15
$\lim \limits_{n \rightarrow+\infty}\left[{\frac{1}{n^4}+\frac{1}{\left(n^2+1\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+4\right)^{\frac{3}{2}}}+\frac{1}{\left(n^2+9\right)^{\frac{3}{2}}}}{+\ldots \ldots+\frac{1}{4 \sqrt{2} n^5}}\right]=$
AP EAPCET 2024 - 18th May Morning Shift
16
$\int_{\log 4}^{\log 4} \frac{e^{2 x}+e^x}{e^{2 r}-5 e^x+6} d x=$
AP EAPCET 2024 - 18th May Morning Shift
17
$\int_1^2 \frac{x^4-1}{x^6-1} d x=$
AP EAPCET 2024 - 18th May Morning Shift
18

Let $$T>0$$ be a fixed number. $$f: R \rightarrow R$$ is a continuous function such that $$f(x+T)=f(x), x \in R$$ If $$I=\int_\limits0^T f(x) d x$$, then $$\int_\limits0^{5 T} f(2 x) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
19

$$\int_\limits1^3 x^n \sqrt{x^2-1} d x=6 \text {, then } n=$$

AP EAPCET 2022 - 5th July Morning Shift
20

[ . ] represents greatest integer function, then $$\int_{-1}^1(x[1+\sin \pi x]+1) d x=$$

AP EAPCET 2022 - 5th July Morning Shift
21

$$\begin{aligned} & \lim _{n \rightarrow \infty}\left[\frac{n}{(n+1) \sqrt{2 n+1}}+\frac{n}{(n+2) \sqrt{2(2 n+2)}}\right. \\ & \left.+\frac{n}{(n+3) \sqrt{3(2 n+3)}}+\ldots n \text { terms }\right]=\int_\limits0^1 f(x) d x \end{aligned}$$

then $$f(x)=$$

AP EAPCET 2022 - 5th July Morning Shift
22

If $$I_n=\int_0^{\pi / 4} \tan ^n x d x$$, then $$\frac{1}{I_2+I_4}+\frac{1}{I_3+I_5}+\frac{1}{I_4+I_6}=$$

AP EAPCET 2022 - 4th July Evening Shift
23

$$\int_0^{\pi / 4} e^{\tan ^2 \theta} \sin ^2 \theta \tan \theta d \theta=$$

AP EAPCET 2022 - 4th July Evening Shift
24

$$\int_{\pi / 4}^{5 \pi / 4}(|\cos t| \sin t+|\sin t| \cos t) d t=$$

AP EAPCET 2022 - 4th July Evening Shift
25

If $$f(x)=\max \{\sin x, \cos x\}$$ and $$g(x)=\min \{\sin x, \cos x\}$$, then $$\int_0^\pi f(x) d x+\int_0^\pi g(x) d x=$$

AP EAPCET 2022 - 4th July Evening Shift
26

$$\int_0^1 a^k x^k d x=$$

AP EAPCET 2022 - 4th July Morning Shift
27

Let $$\alpha$$ and $$\beta(\alpha<\beta)$$ are roots of $$18 x^2-9 \pi x+\pi^2=0, f(x)=x^2, g(x)=\cos x$$. Then, $$\int_\alpha^\beta x(g \circ f(x)) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
28

$$\int_0^\pi x\left(\sin ^2(\sin x)+\cos ^2(\cos x)\right) d x=$$

AP EAPCET 2022 - 4th July Morning Shift
29

If $$\int_0^a {{{dx} \over {4 + {x^2}}} = {\pi \over 8}} $$, then the value of a is equal to

AP EAPCET 2021 - 20th August Morning Shift
30

$$\int_1^2 {{{{x^3} - 1} \over {{x^2}}}} $$ is equal to

AP EAPCET 2021 - 20th August Morning Shift
31

If $$\int_0^{\pi / 2} \tan ^n(x) d x=k \int_0^{\pi / 2} \cot ^n(x) d x$$, then

AP EAPCET 2021 - 19th August Evening Shift
32

$$\int_0^2 x e^x d x$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
33

$$\int_2^4\{|x-2|+|x-3|\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
34

$$\int\limits_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12