Matrices and Determinants · Mathematics · AP EAPCET
MCQ (Single Correct Answer)
If $$A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$$, then $$A A^T$$ is a
If $$A X=D$$ represents the system of simultaneous linear equations $$x+y+z=6, 5 x-y+2 z=3$$ and $$2 x+y-z=-5$$, then (Adj $$A$$) $$D=$$
If $$A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$$, then $$\operatorname{det}\left(A^6+B^6\right)=$$
Let $$G(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$$. If $$x+y=0$$ then $$G(x) G(y)=$$
If $$A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$$, then $$\left(A^T\right)^2+(12 A)^T=$$
If $$a, b, c$$ are respectively the 5 th, 8 th, 13 th terms of an arithmetic progression, then $$\left|\begin{array}{ccc}a & 5 & 1 \\ b & 8 & 1 \\ c & 13 & 1\end{array}\right|=$$
If $$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ a & -1 & 0 \\ b & c & 1\end{array}\right]$$ is such that $$A^2=I$$, then
Let $$A=\left[\begin{array}{ccc}-2 & x & 1 \\ x & 1 & 1 \\ 2 & 3 & -1\end{array}\right]$$. If the roots of the equation $$\operatorname{det} A=0$$ are $$l, m$$ then $$l^3-m^3=$$
For $$i=1,2,3$$ and $$j=1,23$$ If $$a_i^2+b_i^2+c_i^2=1, a_i a_j+b_i b_j+c_i c_j=0, \forall i \neq j$$ and $$A=\left[\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right]$$, then $$\operatorname{det}\left(A A^T\right)=$$
If $$A=\frac{1}{7}\left[\begin{array}{ccc}3 & -2 & 6 \\ -6 & -3 & 2 \\ -2 & 6 & 3\end{array}\right]$$, then
If $$A=\left[\begin{array}{cc}\alpha^2 & 5 \\ 5 & -\alpha\end{array}\right]$$ and $$\operatorname{det}\left(A^{10}\right)=1024$$, then $$\alpha=$$
Let $$A=\left[\begin{array}{ccc}5 & \sin ^2 \theta & \cos ^2 \theta \\ -\sin ^2 \theta & -5 & 1 \\ \cos ^2 \theta & 1 & 5\end{array}\right]$$. Then, maximum value of $$\operatorname{det}(A)$$ is
If $$\frac{x^4+24 x^2+28}{\left(x^2+1\right)^3}=\frac{A x+B}{x^2+1}$$ $$+\frac{C x+D}{\left(x^2+1\right)^2}+\frac{E x+F}{\left(x^2+1\right)^3},$$ then the value of $$A+B+C+D+E+F=$$
The trace of the matrix $$A=\left[\begin{array}{ccc}1 & -5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{array}\right]$$ is
If $$A, B$$ and $$C$$ are the angles of a triangle, then the system of equations $$-x+y \cos C+z \cos B=0, x \cos C-y+z \cos A=0$$ and $$x \cos B+y \cos A-z=0$$
If $$\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1} =\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$$, then
What is the value of $$\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|$$ ?
The value of $$\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$$ is
Let $$A, B, C, D$$ be square real matrices such that $$C^T=D A B, D^{\mathrm{T}}=A B C$$ and $$S=A B C D$$, then $$S^2$$ is equal to
$$A=\left[\begin{array}{ccc}a^2 & 15 & 31 \\ 12 & b^2 & 41 \\ 35 & 61 & c^2\end{array}\right]$$ and $$B=\left[\begin{array}{ccc}2 a & 3 & 5 \\ 2 & 2 b & 8 \\ 1 & 4 & 2 c-3\end{array}\right]$$ are two matrices such that the sum of the principal diagonal elements of both $$A$$ and $$B$$ are equal, then the product of the principal diagonal elements of $$B$$ is
Let $$a, b$$ and $$c$$ be such that $$b+c \neq 0$$ and $$\begin{aligned} & \left|\begin{array}{ccc} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{array}\right| \\ & +\left|\begin{array}{ccc} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n-1} b & (-1)^n c \end{array}\right|=0 \text {, } \\ & \end{aligned}$$
then the value of $$n$$ is
The equation whose roots are the values of the equation $$\left| {\matrix{ 1 & { - 3} & 1 \cr 1 & 6 & 4 \cr 1 & {3x} & {{x^2}} \cr } } \right| = 0$$ is
Let a and b be non-zero real numbers such that $$ab=5/2$$ and given $$A = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$ and $$A{A^T} = 20I$$ ($$l$$ is unit matrix), then the equation whose roots are a and b is
If $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], 10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$$ and $$B=A^{-1}$$, then the value of $$\alpha$$ is
The rank of the matrix $$\left[\begin{array}{ccc}4 & 2 & (1-x) \\ 5 & k & 1 \\ 6 & 3 & (1+x)\end{array}\right]$$ is 1 , then,
If $$a_1, a_2, \ldots . a_9$$ are in GP, then $$\left|\begin{array}{lll}\log a_1 & \log a_2 & \log a_3 \\ \log a_4 & \log a_5 & \log a_6 \\ \log a_7 & \log a_8 & \log a_9\end{array}\right|$$ is equal to
If $$\mathbf{a}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$ and $$\mathbf{c}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$$, then the value of $$\left|\begin{array}{ccc}\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c}\end{array}\right|$$ is equal to