1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The direction cosines of two lines are connected by the relations $l+m-n=0$ and $l m-2 m n+n l=0$. If $\theta$ is the acute angle between those lines, then $\cos \theta=$
A
$\frac{\pi}{6}$
B
$\frac{1}{\sqrt{7}}$
C
$\sqrt{\frac{5}{6}}$
D
$\frac{\pi}{3}$
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The distance from a point $(1,1,1)$ to a variable plane $\pi$ is 12 units and the points of intersections of the plane $\pi$ and $X, Y, Z$ - axes are $A, B, C$ respectively, If the point of intersection of the planes through the points $A, B, C$ and parallel to the coordinate planes is $P$, then the equation of the locus of $P$ is
A
$\left(\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\right)=143\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)$
B
$\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=144$
C
$\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)^2=144\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)$
D
$\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)^2=144\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)^2$
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The shortest distance between the skew lines $\mathbf{r}=(-\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})+t(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$ and $\mathbf{r}=(7 \hat{\mathbf{i}}+4 \hat{\mathbf{k}})+s(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ is
A
15
B
0
C
9
D
16
4
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A(1,2,0), B(2,0,1), C(-3,0,2)$ are the vertices of $\triangle A B C$, then the length of the internal bisector of $\angle B A C$ is
A
$3 \sqrt{6}$
B
$\frac{2 \sqrt{14}}{3}$
C
$6 \sqrt{14}$
D
$\frac{2 \sqrt{6}}{3}$
AP EAPCET Subjects
EXAM MAP