1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The angle between the line with the direction ratios $(2,5,1)$ and the plane $8 x+2 y-z=14$ is
A
$\cos ^{-1}\left(\frac{64}{\sqrt{9804}}\right)$
B
$\sin ^{-1}\left(\frac{64}{\sqrt{9804}}\right)$
C
$\sin ^{-1}\left(\frac{25}{\sqrt{2070}}\right)$
D
$\cos ^{-1}\left(\frac{25}{\sqrt{2070}}\right)$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The direction cosines of the line of intersection of the planes $x+2 y+z-4=0$ and $2 x-y+z-3=0$ are
A
$\left(\frac{3}{\sqrt{26}}, \frac{1}{\sqrt{26}}, \frac{-4}{\sqrt{26}}\right)$
B
$\left(\frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}\right)$
C
$\left(\frac{3}{\sqrt{35}}, \frac{1}{\sqrt{35}}, \frac{-5}{\sqrt{35}}\right)$
D
$\left(\frac{3}{\sqrt{22}}, \frac{-2}{\sqrt{22}}, \frac{3}{\sqrt{22}}\right)$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $L_1$ and $L_2$ are two lines which pass through origin and having direction ratios $(3,1,-5)$ and $(2,3,-1)$ respectively, then equation of the plane containing $L_1$ and $L_2$ is
A
$4 x+5 y-63=0$
B
$5 x-y+3 z=0$
C
$2 x-y+z=0$
D
$x-5 y+3 z=0$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Let $O(\mathbf{O}), A(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}), B(-2 \hat{\mathbf{i}}+3 \hat{\mathbf{k}}), C(2 \hat{\mathbf{i}}+\hat{\mathbf{j}})$ and $D(4 \hat{\mathbf{k}})$ are position vectors of the points $O, A, B, C$ and $D$. If a line passing through $A$ and $B$ intersects the plane passing through $O, C$ and $D$ at the point $R$, then position vector of $R$ is
A
$-8 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
B
$2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
C
$-7 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
D
$3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
AP EAPCET Subjects
EXAM MAP