1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Let $O(\mathbf{O}), A(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}), B(-2 \hat{\mathbf{i}}+3 \hat{\mathbf{k}}), C(2 \hat{\mathbf{i}}+\hat{\mathbf{j}})$ and $D(4 \hat{\mathbf{k}})$ are position vectors of the points $O, A, B, C$ and $D$. If a line passing through $A$ and $B$ intersects the plane passing through $O, C$ and $D$ at the point $R$, then position vector of $R$ is
A
$-8 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
B
$2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
C
$-7 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
D
$3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The distance of the point $O(\mathbf{O})$ from the plane $\mathbf{r}$. $(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=5$ measured parallel to $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}$ is
A
35
B
30
C
25
D
42
3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $A(1,0,2), B(2,1,0), C(2,-5,3)$ and $D(0,3,2)$ are four points and the point of intersection of the lines $A B$ and $C D$ is $P(a, b, c)$, then $a+b+c=$
A
3
B
-5
C
5
D
-3
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The direction cosines of two lines are connected by the relations $l+m-n=0$ and $l m-2 m n+n l=0$. If $\theta$ is the acute angle between those lines, then $\cos \theta=$
A
$\frac{\pi}{6}$
B
$\frac{1}{\sqrt{7}}$
C
$\sqrt{\frac{5}{6}}$
D
$\frac{\pi}{3}$
AP EAPCET Subjects
EXAM MAP