1
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The circle $S \equiv x^2+y^2-2 x-4 y+1=0$ cuts the $Y$-axis at $A, B(O A>O B)$. If the radical axis of $S \equiv 0$ and $S' \equiv x^2+y^2-4 x-2 y+4=0$ cuts the $Y$-axis at $C$, then the ratio in which $C$ divides $A B$ is
A
$7+2 \sqrt{3}:-7+2 \sqrt{3}$
B
$\sqrt{3}+2: \sqrt{3}-2$
C
$6-2 \sqrt{3}: 2 \sqrt{3}-6$
D
$-3: \sqrt{3}$
2
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the circle $S=0$ cuts the circles $x^2+y^2-2 x+6 y=0$, $x^2+y^2-4 x-2 y+6=0$ and $x^2+y^2-12 x+2 y+3=0$ orthogonally, then equation of the tangent at $(0,3)$ on $S=0$ is
A
$x+y-3=0$
B
$y=3$
C
$x=0$
D
$x-y+3=0$
3
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\theta$ is the angle between the tangents drawn from the point $(2,3)$ to the circle $x^2+y^2-6 x+4 y+12=0$ then $\theta=$
A
$\cos ^{-1}\left(\frac{5}{13}\right)$
B
$\sin ^{-1}\left(\frac{4}{5}\right)$
C
$2 \tan ^{-1}\left(\frac{5}{12}\right)$
D
$\tan ^{-1}\left(\frac{5}{12}\right)$
4
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $2 x-3 y+3=0$ and $x+2 y+k=0$ are conjugate lines with respect to the circle $S=x^2+y^2+8 x-6 y-24=0$, then the length of the tangent drawn from the point $\left(\frac{k}{4}, \frac{k}{3}\right)$ to the circle $S=0$, is
A
7
B
1
C
12
D
24
AP EAPCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12