While solving a system of linear equations $A X=B$ using Cramer's rule with the usual notation if
$$ \Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ -1 & 1 & 5 \end{array}\right|, \Delta_1=\left|\begin{array}{ccc} 5 & 1 & 1 \\ 4 & -1 & 2 \\ 11 & 1 & 5 \end{array}\right| \text { and } X=\left[\begin{array}{l} \alpha \\ 2 \\ \beta \end{array}\right] \text {, then } \alpha^2+\beta^2= $$
If $$A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$$, then $$A A^T$$ is a
If $$A X=D$$ represents the system of simultaneous linear equations $$x+y+z=6, 5 x-y+2 z=3$$ and $$2 x+y-z=-5$$, then (Adj $$A$$) $$D=$$
If $$A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$$, then $$\operatorname{det}\left(A^6+B^6\right)=$$