1
AP EAPCET 2022 - 5th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $$G(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$$. If $$x+y=0$$ then $$G(x) G(y)=$$

A
null Matrix
B
skew-symmetric Matrix
C
identity Matrix
D
symmetric Matrix
2
AP EAPCET 2022 - 4th July Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $$A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$$, then $$\left(A^T\right)^2+(12 A)^T=$$

A
$$5\left[\begin{array}{cc}8 & 12 \\ -9 & 5\end{array}\right]$$
B
$$5\left[\begin{array}{cc}8 & -9 \\ -12 & 5\end{array}\right]$$
C
$$\left[\begin{array}{cc}40 & -45 \\ 60 & 25\end{array}\right]$$
D
$$\left[\begin{array}{cc}40 & -60 \\ -45 & 25\end{array}\right]$$
3
AP EAPCET 2022 - 4th July Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $$a, b, c$$ are respectively the 5 th, 8 th, 13 th terms of an arithmetic progression, then $$\left|\begin{array}{ccc}a & 5 & 1 \\ b & 8 & 1 \\ c & 13 & 1\end{array}\right|=$$

A
0
B
1
C
abc
D
520
4
AP EAPCET 2022 - 4th July Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ a & -1 & 0 \\ b & c & 1\end{array}\right]$$ is such that $$A^2=I$$, then

A
$$b=\frac{a c}{2}$$
B
$$b=-\frac{a c}{2}$$
C
$$b=\frac{a+c}{2}$$
D
$$b=\sqrt{a c}$$
AP EAPCET Subjects
EXAM MAP