The equation whose roots are the values of the equation $$\left| {\matrix{ 1 & { - 3} & 1 \cr 1 & 6 & 4 \cr 1 & {3x} & {{x^2}} \cr } } \right| = 0$$ is
Let a and b be non-zero real numbers such that $$ab=5/2$$ and given $$A = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$ and $$A{A^T} = 20I$$ ($$l$$ is unit matrix), then the equation whose roots are a and b is
If $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], 10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$$ and $$B=A^{-1}$$, then the value of $$\alpha$$ is
The rank of the matrix $$\left[\begin{array}{ccc}4 & 2 & (1-x) \\ 5 & k & 1 \\ 6 & 3 & (1+x)\end{array}\right]$$ is 1 , then,