If $$a_1, a_2, \ldots . a_9$$ are in GP, then $$\left|\begin{array}{lll}\log a_1 & \log a_2 & \log a_3 \\ \log a_4 & \log a_5 & \log a_6 \\ \log a_7 & \log a_8 & \log a_9\end{array}\right|$$ is equal to
If $$\mathbf{a}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$ and $$\mathbf{c}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$$, then the value of $$\left|\begin{array}{ccc}\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c}\end{array}\right|$$ is equal to