1
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

$(r, \theta)$ denotes $r(\cos \theta+i \sin \theta)$. If $x=(1, \alpha), y=(1, \beta), z=(1, \gamma)$ and $x+y+z=0$, then $\Sigma \cos (2 \alpha-\beta-\gamma)$ is equal to

A
3
B
0
C
1
D
-1
2
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\arg \left[\frac{(1+i \sqrt{3})(-\sqrt{3}-i)}{(1-i)(-i)}\right]$ is equal to
A
$\frac{5 \pi}{6}$
B
$\frac{\pi}{4}$
C
$\frac{2 \pi}{3}$
D
$\frac{-\pi}{2}$
3
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $P(x, y)$ represents the complex number $z=x+iy$ in the argand plane and $\arg \left(\frac{z-3 i}{z+4}\right)=\frac{\pi}{2}$, then the equation of the locus of $P$ is

A
$x^2+y^2+4 x-3 y=0$ and $3 x-4 y>0$

B
$x^2+y^2+4 x-3 y+2=0$ and $3 x-4 y>0$

C
$x^2+y^2+4 x-3 y=0$ and $3 x-4 y<0$

D
$x^2+y^2+4 x-3 y+2=0$ and $3 x-4 y<0$

4
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and $\alpha_5$ are the roots of $x^5-5 x^4+9 x^3-9 x^2+5 x-1=0$, then $\frac{1}{\alpha_1^2}+\frac{1}{\alpha_2^2}+\frac{1}{\alpha_3^2}+\frac{1}{\alpha_4^2}+\frac{1}{\alpha_5^2}$ is equal to

A
15
B
$\frac{1}{7}$
C
7
D
12
AP EAPCET Subjects
EXAM MAP