1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $z_1=10+6 i, z_2=4+6 i$ and $z$ is any complex number such that the argument of $\frac{\left(z-z_1\right)}{\left(z-z_2\right)}$ is $\frac{\pi}{4}$,
A
$|z-7-9 i|=3 \sqrt{2}$
B
$|z-7-9 i|=2 \sqrt{2}$
C
$|z-3+9 i|=3 \sqrt{2}$
D
$|z+3-9 i|=2 \sqrt{2}$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\frac{3-2 i \sin \theta}{1+2 i \sin \theta}$ is purely imaginary number, then $\theta=$
A
$2 n \pi \pm \frac{\pi}{4}$
B
$2 n \pi \pm \frac{\pi}{2}$
C
$n \pi \pm \frac{\pi}{3}$
D
$n \pi \pm \frac{\pi}{6}$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $z=x+i y, x^2+y^2=1$ and $z_1=z e^{i \theta}$, then $\frac{z_1^{2 n}-1}{z_1^{2 n}+1}=$
A
$-i \tan \left(n\left(\theta+\tan ^{-1}\left(\frac{y}{x}\right)\right)\right)$
B
$i \cot \left(n\left(\theta+\tan ^{-1} \frac{y}{x}\right)\right)$
C
$i \tan \left(n\left(\theta+\tan ^{-1} \frac{x}{u}\right)\right)$
D
$i \tan \left(n\left(\theta+\tan ^{-1} \frac{y}{x}\right)\right)$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the point $P$ represents the complex number $z=x+i y$ in the argand plane and if $\frac{z+i}{z-i}$ is a purely imaginary number, then the locus of $P$ is
A
$x^2+y^2+x-y=0$ and $(x, y) \neq(1,0)$
B
$x^2+y^2-x+y=0$ and $(x, y) \neq(1,0)$
C
$x^2+y^2-x+y=0$ and $(x, y)=(1,0)$
D
$x^2+y^2+x+y=0$
AP EAPCET Subjects
EXAM MAP