1
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

Incident light of wavelength $$\lambda=800 \mathrm{~nm}$$ produces a diffraction pattern on a screen $$1.5 \mathrm{~m}$$ away when it passes through a single slit of width $$0.5 \mathrm{~mm}$$. The distance between the first dark fringes on either side of the central bright fringe is

A
2.4 mm
B
2.4 cm
C
4.8 cm
D
4.8 mm
2
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

A slit of width $$10 \times 10^{-7} \mathrm{~m}$$ is illuminated by light of wavelength $$500 \mathrm{~nm}$$. Angular position of the first minimum is

A
$$\frac{1}{2}^0$$
B
30$$^\circ$$
C
1$$^\circ$$
D
60$$^\circ$$
3
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment the ratio of phase difference between light waves reaching the third bright fringe and third dark fringe is

A
$$\frac{4}{3}$$
B
$$\frac{5}{2}$$
C
$$\frac{6}{5}$$
D
$$\frac{7}{6}$$
4
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment, the ratio of intensities of light from one slit to the other is $$9: 1$$. If Im is the maximum intensity, what is the resultant intensity when they interfere at phase difference $$\phi$$ ?

A
$$ \frac{\operatorname{Im}}{9}\left[1+8 \cos ^2\left(\frac{\phi}{2}\right)\right] $$
B
$$ \frac{\operatorname{Im}}{4}\left[1+8 \cos ^2\left(\frac{\phi}{2}\right)\right] $$
C
$$ \frac{\operatorname{Im}}{4}\left[1+3 \cos ^2\left(\frac{\phi}{2}\right)\right] $$
D
$$ \frac{\operatorname{Im}}{2}\left[4+12 \cos ^2\left(\frac{\phi}{2}\right)\right] $$
COMEDK Subjects
EXAM MAP