If potential (in volt) in a region is expressed as $$\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=6 \mathrm{xy}-\mathrm{y}+2 \mathrm{yz}$$, the electric field (in $$N C^{-1}$$) at point $$(1,0,1)$$ is
Five charges, '$$q$$' each are placed at the comers of a regular pentagon of side '$$a$$' as shown in figure. First, charge from '$$A$$' is removed with other charges intact, then charge at '$$A$$' is replaced with an equal opposite charge. The ratio of magnitudes of electric fields at $$\mathrm{O}$$, without charge at $$A$$ and that with equal and opposite charge at $$A$$ is
Two charges '$$-q$$' each are fixed, separated by distance '$$2 d$$'. A third charge '$$q$$' of mass '$$m$$' placed at the mid-point is displaced slightly by '$$x$$' $$(x< < d)$$ perpendicular to the line joining the two fixed charges as shown in Fig. The time period of oscillation of '$$q$$' will be
Two metal spheres, one of radius $$\frac{R}{2}$$ and the other of radius $$2 \mathrm{R}$$ respectively have the same surface charge density They are brought in contact and separated. The ratio of their new surface charge densities is