1
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

A tiny ball of mass $$\mathrm{m}$$ and charge $$\mathrm{q}$$ is suspended from the fixed support using an insulating string of length $$1 \mathrm{~m}$$. The horizontal uniform electric field $$\mathrm{E}$$ is switched on. The angle made by the string with vertical when the ball is in equilibrium is $$45^{\circ}$$. The magnitude of uniform electric field is

A
$$ E=\frac{m g}{q} \quad N C^{-1} $$
B
$$ \mathrm{E}=\frac{\sqrt{2} \mathrm{mg}}{\mathrm{q}} \mathrm{NC}^{-1} $$
C
$$ E=\frac{m g}{\sqrt{2} q} \quad N C^{-1} $$
D
$$ \mathrm{E}=0 \quad \mathrm{NC}^{-1} $$
2
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

Figure shows three arrangements of electric field lines. In each arrangement, a proton is released from rest at point $$\mathrm{P}$$ and then accelerated through point $$\mathrm{Q}$$ by the electric field. Points $$\mathrm{P}$$ and $$\mathrm{Q}$$ have equal separations in the three arrangements. If $$p_1 p_2$$ and $$p_3$$ are linear momentum of the proton at point $$\mathrm{Q}$$ in the three arrangement respectively, then

A
$$ p_3>p_2>p_1 $$
B
$$ p_1=p_2=p_3 $$
C
$$ p_1< p_2=p_3 $$
D
$$ p_1< p_2>p_3 $$
3
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

3 point charges each of $$-\mathrm{q}$$ are placed on the circumference of a circle of diameter $$2 \mathrm{a}$$ at $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ respectively as shown in figure. The electric field at $$\mathrm{O}$$ is

COMEDK 2024 Afternoon Shift Physics - Electrostatics Question 18 English

A
Zero
B
$$\frac{\mathrm{Kq}}{2 \mathrm{a}}$$ towards $$\mathrm{OC}$$
C
$$\frac{\mathrm{Kq}}{\mathrm{a}}$$ towards $$\mathrm{OB}$$
D
$$\frac{\mathrm{Kq}}{\mathrm{a}}$$ towards $$\mathrm{OA}$$
4
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

A uniformly charged solid sphere of radius $$\mathrm{R}$$ has potential $$\mathrm{V}_0$$ (measured with respect to infinity) on its surface. For this sphere the equipotential surfaces with potentials $$\frac{3 \mathrm{~V}_0}{2}, \frac{\mathrm{V}_0}{1}, \frac{3 \mathrm{~V}_0}{4}$$ and $$\frac{\mathrm{V}_0}{4}$$ have radius $$\mathrm{R}_1, \mathrm{R}_2, \mathrm{R}_3$$ and $$\mathrm{R}_4$$ and respectively, then

A
$$ R_1 \neq 0 \text { and }\left(R_2-R_1\right)>\left(R_4-R_3\right) $$
B
$$ R _2< R_4 $$
C
$$ R_1=0 \text { and } R_2>\left(R_4-R_3\right) $$
D
$$ R_1=0 \text { and } R_2<\left(R_4-R_3\right) $$
COMEDK Subjects
EXAM MAP