1
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$$\mathop {\lim }\limits_{x \to 1} \left( {{{x + {x^2} + {x^3} + ... + {x^n} - n} \over {x - 1}}} \right) = $$
A
$\frac{n(n+1)}{2}$
B
$\frac{n+1}{2}$
C
$\frac{2}{n}$
D
$n$
2
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the function $f(x)=\frac{\sqrt{1+x}-1}{x}$ is continuous at $x=0$, then $f(0)=$
A
$-\frac{1}{2}$
B
$\frac{1}{3}$
C
$\frac{1}{2}$
D
$-\frac{1}{3}$
3
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)=\frac{5 x \cdot \operatorname{cosec}(\sqrt{x})-1}{(x-2) \operatorname{cosec}(\sqrt{x})}$, then $\lim \limits_{x \rightarrow \infty} f\left(x^2\right)=$
A
1
B
-1
C
5
D
-5
4
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\lim \limits_{x \rightarrow 2} \frac{\sqrt{1+4 x}-\sqrt{3+3 x}}{x^3-8}=$
A
$\frac{1}{72}$
B
$\frac{1}{36}$
C
$\frac{1}{24}$
D
$\frac{1}{12}$
AP EAPCET Subjects
EXAM MAP