1
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)=\left(\frac{1+x}{1-x}\right)^{\frac{1}{x}}$ is continuous at $x=0$, then $f(0)=$
A
$e^{\frac{1}{2}}$
B
$e^2$
C
$e^{-2}$
D
$e^{\frac{-1}{2}}$
2
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The function $f(x)=|x-24|$ is
A
Differentiable on $[0,25]$
B
not continuous at $x=24$
C
neither continuous nor differentiable on $[0,25]$
D
Continuous on $[0,25]$ but not differentiable on $[0,25]$
3
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$$\mathop {\lim }\limits_{n \to \infty }\left(\frac{1}{\sqrt{n^2}}+\frac{1}{\sqrt{n^2-1}}+\ldots+\frac{1}{\sqrt{n^2-(n-1)^2}}\right)= $$
A
$2 \sqrt{\pi}$
B
$\frac{2}{\sqrt{\pi}}$
C
$\frac{\pi}{2}$
D
$\frac{3 \pi}{2}$ $$\left( {{{} \over {}}} \right)$$ $$ (\because n=\infty) $$
4
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$$\mathop {\lim }\limits_{x \to 0} \left( {{{\sin (\pi {{\cos }^2}x} \over {{x^2}}}} \right) = $$
A
$-\pi$
B
$\pi$
C
$\frac{\pi}{2}$
D
1
AP EAPCET Subjects
EXAM MAP