1
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)=\frac{5 x \cdot \operatorname{cosec}(\sqrt{x})-1}{(x-2) \operatorname{cosec}(\sqrt{x})}$, then $\lim \limits_{x \rightarrow \infty} f\left(x^2\right)=$
A
1
B
-1
C
5
D
-5
2
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\lim \limits_{x \rightarrow 2} \frac{\sqrt{1+4 x}-\sqrt{3+3 x}}{x^3-8}=$
A
$\frac{1}{72}$
B
$\frac{1}{36}$
C
$\frac{1}{24}$
D
$\frac{1}{12}$
3
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $$ \lim _{x \rightarrow \infty} \frac{(\sqrt{2 x+1}+\sqrt{2 x-1})^8+(\sqrt{2 x+1}-\sqrt{2 x-1})^8\left(P x^4-16\right)}{\left(x+\sqrt{x^2-2}\right)^8+\left(x-\sqrt{x^2-2}\right)^8}=1 $$ then $P=$
A
16
B
64
C
$\frac{1}{64}$
D
$\frac{1}{16}$
4
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\lim \limits_{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\cos x+\sin x)^5}{1-\sin 2 x}=$
A
$5 \sqrt{2}$
B
$3 \sqrt{2}$
C
$2 \sqrt{2}$
D
$\sqrt{2}$
AP EAPCET Subjects
EXAM MAP