1
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the roots of the equation $z^3+i z^2+2 i=0$ are the vertices of a $\triangle A B C$, then that $\triangle A B C$ is
A
a right angled triangle
B
an equilateral triangle
C
an isosceles triangle
D
a right angled isosceles triangle
2
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

$(r, \theta)$ denotes $r(\cos \theta+i \sin \theta)$. If $x=(1, \alpha), y=(1, \beta), z=(1, \gamma)$ and $x+y+z=0$, then $\Sigma \cos (2 \alpha-\beta-\gamma)$ is equal to

A
3
B
0
C
1
D
-1
3
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\arg \left[\frac{(1+i \sqrt{3})(-\sqrt{3}-i)}{(1-i)(-i)}\right]$ is equal to
A
$\frac{5 \pi}{6}$
B
$\frac{\pi}{4}$
C
$\frac{2 \pi}{3}$
D
$\frac{-\pi}{2}$
4
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $P(x, y)$ represents the complex number $z=x+iy$ in the argand plane and $\arg \left(\frac{z-3 i}{z+4}\right)=\frac{\pi}{2}$, then the equation of the locus of $P$ is

A
$x^2+y^2+4 x-3 y=0$ and $3 x-4 y>0$

B
$x^2+y^2+4 x-3 y+2=0$ and $3 x-4 y>0$

C
$x^2+y^2+4 x-3 y=0$ and $3 x-4 y<0$

D
$x^2+y^2+4 x-3 y+2=0$ and $3 x-4 y<0$

AP EAPCET Subjects
EXAM MAP