1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the locus of the mid-point of the chords of the circle $x^2+y^2=25$, which subtend a right angle at the origin is given by $\frac{x^2}{\alpha^2}+\frac{y^2}{\alpha^2}=1$, then $|\alpha|=$
A
$\frac{2}{5}$
B
$\frac{5}{\sqrt{2}}$
C
$\frac{2}{25}$
D
$5 \sqrt{2}$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The radical centre of the circles $x^2+y^2+2 x+3 y+1=0$, $x^2+y^2+x-y+3=0, x^2+y^2-3 x+2 y+5=0$
A
$\left(-\frac{7}{38}, \frac{6}{19}\right)$
B
$\left(\frac{6}{19}, \frac{14}{19}\right)$
C
$\left(\frac{14}{19}, \frac{6}{19}\right)$
D
$\left(\frac{2}{19}, \frac{3}{19}\right)$
3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If a circle is inscribed in an equilateral triangle of side $a$, then the area of any square (in sq units) inscribed in this circle is
A
$\frac{2 a^2}{3}$
B
$\sqrt{3} \frac{a^2}{2}$
C
$\frac{a^2}{2 \sqrt{3}}$
D
$\frac{a^2}{6}$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the line segment joining the points $(1,0)$ and $(0,1)$ subtends an angle of $45^{\circ}$ at a variable point $P$, then the equation of the locus of $P$ is
A
$\left(x^2+y^2-1\right)\left(x^2+y^2-2 x-2 y+1\right)=0, x \neq 0,1$
B
$\left(x^2+y^2-1\right)\left(x^2+y^2+2 x+2 y+1\right)=0, x \neq 0,1$
C
$x^2+y^2+2 x+2 y+1=0$
D
$x^2+y^2=4$
AP EAPCET Subjects
EXAM MAP