1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the equation of the circle passing through the points of intersection of the circles $x^2-2 x+y^2-4 y-4=0$, $x^2+2 x+y^2+4 y-4=0$ and the point $(3,3)$ is given by $x^2+y^2+\alpha x+\beta y+\gamma=0$, then $3(\alpha+\beta+\gamma)=$
A
32
B
-32
C
-26
D
26
2
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The angle subtended by the chord $x+y-1=0$ of the circle $x^2+y^2-2 x+4 y+4=0$ at the origin is
A
$\cos ^{-1}\left(\frac{6}{\sqrt{34}}\right)$
B
$\frac{\pi}{2}$
C
$\cos ^{-1}\left(\frac{2}{\sqrt{13}}\right)$
D
$\frac{\pi}{3}$
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $P$ be any point on the circle $x^2+y^2=25$. Let $L$ be the chord of contact of $P$ with respect to the circle $x^2+y^2=9$. The locus of the poles of the lines $L$ with respect to the circle $x^2+y^2=36$ is
A
$y^2=20 x$
B
$\frac{x^2}{9}+\frac{y^2}{36}=1$
C
$x^2+y^2=400$
D
$\frac{x^2}{25}-\frac{y^2}{16}=1$
4
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the circles $S \equiv x^2+y^2-14 x+6 y+33=0$ and $S^1 \equiv x^2+y^2-a^2=0(a \in N)$ have 4 common tangents, then possible number of values of $a$ is
A
13
B
5
C
14
D
2
AP EAPCET Subjects
EXAM MAP