1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\frac{3-2 i \sin \theta}{1+2 i \sin \theta}$ is purely imaginary number, then $\theta=$
A
$2 n \pi \pm \frac{\pi}{4}$
B
$2 n \pi \pm \frac{\pi}{2}$
C
$n \pi \pm \frac{\pi}{3}$
D
$n \pi \pm \frac{\pi}{6}$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $z=x+i y, x^2+y^2=1$ and $z_1=z e^{i \theta}$, then $\frac{z_1^{2 n}-1}{z_1^{2 n}+1}=$
A
$-i \tan \left(n\left(\theta+\tan ^{-1}\left(\frac{y}{x}\right)\right)\right)$
B
$i \cot \left(n\left(\theta+\tan ^{-1} \frac{y}{x}\right)\right)$
C
$i \tan \left(n\left(\theta+\tan ^{-1} \frac{x}{u}\right)\right)$
D
$i \tan \left(n\left(\theta+\tan ^{-1} \frac{y}{x}\right)\right)$
3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the point $P$ represents the complex number $z=x+i y$ in the argand plane and if $\frac{z+i}{z-i}$ is a purely imaginary number, then the locus of $P$ is
A
$x^2+y^2+x-y=0$ and $(x, y) \neq(1,0)$
B
$x^2+y^2-x+y=0$ and $(x, y) \neq(1,0)$
C
$x^2+y^2-x+y=0$ and $(x, y)=(1,0)$
D
$x^2+y^2+x+y=0$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$S=\{z \in C /|z+1-i|=1\}$ represents
A
the circle with centre at $(-1,1)$ and radius 1 unit
B
the circle with cente at $(1,-1)$ and radius 1 unit
C
the closed circular disc with centre at $(1,-1)$ and radius 1 unt
D
the closed circular disc with centre at( $-1,1$ ) and radius 1 unt
AP EAPCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12