1
GATE CE 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The quadratic approximation of $$f\left( x \right) = {x^3} - 3{x^2} - 5\,\,$$ at the point $$x=0$$ is
A
$$3{x^2} - 6x - 5$$
B
$$ - 3{x^2} - 5$$
C
$$ - 3{x^2} + 6x - 5$$
D
$$3{x^2} - 5$$
2
GATE CE 2012
MCQ (Single Correct Answer)
+1
-0.3
The estimate of $$\int\limits_{0.5}^{1.5} {{{dx} \over x}} \,\,$$ obtained using Simpson's rule with three-point function evaluation exceeds the exact value by
A
$$0.235$$
B
$$0.068$$
C
$$0.024$$
D
$$0.012$$
3
GATE CE 2008
MCQ (Single Correct Answer)
+1
-0.3
The Newton-Raphson iteration $${x_{n + 1}} = {1 \over 2}\left( {{x_n} + {R \over {{x_n}}}} \right)$$ can be used to compute
A
square of $$R$$
B
reciprocal of $$R$$
C
square root of $$R$$
D
logarithm of $$R$$
4
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
The following equation needs to be numerically solved using the Newton $$-$$ Raphson method $${x^3} + 4x - 9 = 0.\,\,$$ The iterative equation for this purpose is ($$k$$ indicates the iteration level)
A
$${X_{k + 1}} = {{2X_k^3 + 9} \over {3X_k^2 + 4}}$$
B
$${X_{k + 1}} = {{3X_k^3 + 9} \over {2X_k^2 + 9}}$$
C
$${X_{k + 1}} = {X_k} - 3_k^2 + 4$$
D
$${X_{k + 1}} = {{4X_k^2 + 3} \over {9X_k^2 + 2}}$$
GATE CE Subjects
Fluid Mechanics and Hydraulic Machines
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12