1
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
The following equation needs to be numerically solved using the Newton $$-$$ Raphson method $${x^3} + 4x - 9 = 0.\,\,$$ The iterative equation for this purpose is ($$k$$ indicates the iteration level)
A
$${X_{k + 1}} = {{2X_k^3 + 9} \over {3X_k^2 + 4}}$$
B
$${X_{k + 1}} = {{3X_k^3 + 9} \over {2X_k^2 + 9}}$$
C
$${X_{k + 1}} = {X_k} - 3_k^2 + 4$$
D
$${X_{k + 1}} = {{4X_k^2 + 3} \over {9X_k^2 + 2}}$$
2
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
Given that one root of the equation $$\,{x^3} - 10{x^2} + 31x - 30 = 0\,\,$$ is $$5$$ then other roots are
A
$$2$$ and $$3$$
B
$$2$$ and $$4$$
C
$$3$$ and $$4$$
D
$$-2$$ and $$-3$$
3
GATE CE 2005
MCQ (Single Correct Answer)
+1
-0.3
Given $$a>0,$$ we wish to calculate it reciprocal value $${1 \over a}$$ by using Newton - Raphson method for $$f(x)=0.$$ The Newton - Raphson algorithm for the function will be
A
$${X_{k + 1}} = {1 \over 2}\left( {{X_k} + {a \over {{X_k}}}} \right)$$
B
$${X_{k + 1}} = {X_k} + {a \over 2}X_k^2$$
C
$${X_{k + 1}} = 2{X_k} - aX_k^2$$
D
$${X_{k + 1}} = 2{X_k} - {a \over 2}X_k^2$$
4
GATE CE 1995
Subjective
+1
-0
Let $$\,\,f\left( x \right) = x - \cos \,x.\,\,\,$$ Using Newton-Raphson method at the $$\,{\left( {n + 1} \right)^{th}}$$ iteration, the point $$\,{x_{n + 1}}$$ is computed from $${x_n}$$ as
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12
© ExamGOAL 2024