1
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
The following equation needs to be numerically solved using the Newton $$-$$ Raphson method $${x^3} + 4x - 9 = 0.\,\,$$ The iterative equation for this purpose is ($$k$$ indicates the iteration level)
A
$${X_{k + 1}} = {{2X_k^3 + 9} \over {3X_k^2 + 4}}$$
B
$${X_{k + 1}} = {{3X_k^3 + 9} \over {2X_k^2 + 9}}$$
C
$${X_{k + 1}} = {X_k} - 3_k^2 + 4$$
D
$${X_{k + 1}} = {{4X_k^2 + 3} \over {9X_k^2 + 2}}$$
2
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
Given that one root of the equation $$\,{x^3} - 10{x^2} + 31x - 30 = 0\,\,$$ is $$5$$ then other roots are
A
$$2$$ and $$3$$
B
$$2$$ and $$4$$
C
$$3$$ and $$4$$
D
$$-2$$ and $$-3$$
3
GATE CE 2005
MCQ (Single Correct Answer)
+1
-0.3
Given $$a>0,$$ we wish to calculate it reciprocal value $${1 \over a}$$ by using Newton - Raphson method for $$f(x)=0.$$ The Newton - Raphson algorithm for the function will be
A
$${X_{k + 1}} = {1 \over 2}\left( {{X_k} + {a \over {{X_k}}}} \right)$$
B
$${X_{k + 1}} = {X_k} + {a \over 2}X_k^2$$
C
$${X_{k + 1}} = 2{X_k} - aX_k^2$$
D
$${X_{k + 1}} = 2{X_k} - {a \over 2}X_k^2$$
4
GATE CE 1995
Subjective
+1
-0
Let $$\,\,f\left( x \right) = x - \cos \,x.\,\,\,$$ Using Newton-Raphson method at the $$\,{\left( {n + 1} \right)^{th}}$$ iteration, the point $$\,{x_{n + 1}}$$ is computed from $${x_n}$$ as
GATE CE Subjects
Fluid Mechanics and Hydraulic Machines
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN