1
GATE CE 2000
+2
-0.6
The four cross sections shown below are required to be ordered in the increasing order of their respective shape factors.
A
$${\rm I}{\rm I}{\rm I},\,\,{\rm I},\,\,{\rm I}V,{\rm I}{\rm I}$$
B
$${\rm I},\,\,{\rm I}{\rm I},\,\,{\rm I}{\rm I}{\rm I},{\rm I}V$$
C
$${\rm I}{\rm I}{\rm I},\,\,{\rm I}V,\,\,{\rm I},\,\,{\rm I}{\rm I}$$
D
$${\rm I}{\rm I}{\rm I},\,\,{\rm I}V,\,\,{\rm I}{\rm I},\,\,{\rm I}$$
2
GATE CE 2000
+2
-0.6
A cantilever beam of length $$L$$ and a cross section with shape factor $$'f'$$ supports a concentrated load $$P$$ as shown below:

The length $${L_P}$$ of the plastic zone, when the maximum bending moment, equals the plastic moment $${M_P}$$, given by

A
$${{{L_P}} \over L} = {1 \over f}$$
B
$${{{L_P}} \over L} = L\left( {1 - f} \right)$$
C
$${{{L_P}} \over L} = 1 - {1 \over {\sqrt f }}$$
D
$${{{L_P}} \over L} = 1 - {1 \over f}$$
3
GATE CE 1999
+2
-0.6
The shape factor of the section shown in fig. is
A
$$1.5$$
B
$$1.12$$
C
$$2$$
D
$$1.7$$
4
GATE CE 1998
+2
-0.6
The plastic modulus of a section is $$4.8 \times {10^{ - 4}}\,\,{m^3}.$$ The shape factor is $$1.2$$. The plastic moment capacity of the section is $$120$$ $$kN$$-$$m.$$ The yield stress of the material is
A
$$100$$ $$MPa$$
B
$$240$$ $$MPa$$
C
$$250$$ $$MPa$$
D
$$300$$ $$MPa$$
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12