1
GATE CE 2003
MCQ (Single Correct Answer)
+1
-0.3
If $$L$$ denotes the laplace transform of a function, $$L\left\{ {\sin \,\,at} \right\}$$ will be equal to
A
$${a \over {{s^2} - {a^2}}}$$
B
$${a \over {{s^2} + {a^2}}}$$
C
$${s \over {{s^2} + {a^2}}}$$
D
$${s \over {{s^2} - {a^2}}}$$
2
GATE CE 2001
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of $$1/\left( {{s^2} + 2s} \right)$$ is
A
$$\left( {1 - {e^{ - 2t}}} \right)$$
B
$$\left( {1 + {e^{2t}}} \right)/2$$
C
$$\left( {1 - {e^{2t}}} \right)/2$$
D
$$\left( {1 - {e^{ - 2t}}} \right)/2$$
3
GATE CE 1999
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of the function
$$\eqalign{ & f\left( t \right) = k,\,0 < t < c \cr & \,\,\,\,\,\,\,\,\, = 0,\,c < t < \infty ,\,\, \cr} $$
is
A
$$\left( {k/s} \right){e^{ - sc}}$$
B
$$\left( {k/s} \right){e^{sc}}$$
C
$$k\,{e^{ - sc}}$$
D
$$\left( {k/s} \right)\left( {1 - {e^{ - sc}}} \right)$$
4
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
The Laplace Transform of a unit step function $${u_a}\left( t \right),$$ defined as
$$\matrix{ {{u_a}\left( t \right) = 0} & {for\,\,\,t < a\,} \cr { = 1} & {for\,\,\,t > a,} \cr } $$ is
A
$${e^{ - as}}/s$$
B
$$s{e^{ - as}}$$
C
$$s - u\left( 0 \right)$$
D
$$s{e^{ - as}} - 1$$
GATE CE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12