1
GATE CE 2004
MCQ (Single Correct Answer)
+1
-0.3
A delayed unit step function is defined as $$$u\left( {t - a} \right) = \left\{ {\matrix{ {0,} & {t < a} \cr {1,} & {t \ge a} \cr } } \right.$$$

Its Laplace transform is ____________.

A
$$a\,\,{e^{ - as}}$$
B
$${e^{ - as}}/s$$
C
$${e^{ as}}/s$$
D
$${e^{ - as}}/a$$
2
GATE CE 2003
MCQ (Single Correct Answer)
+1
-0.3
If $$L$$ denotes the laplace transform of a function, $$L\left\{ {\sin \,\,at} \right\}$$ will be equal to
A
$${a \over {{s^2} - {a^2}}}$$
B
$${a \over {{s^2} + {a^2}}}$$
C
$${s \over {{s^2} + {a^2}}}$$
D
$${s \over {{s^2} - {a^2}}}$$
3
GATE CE 2001
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of $$1/\left( {{s^2} + 2s} \right)$$ is
A
$$\left( {1 - {e^{ - 2t}}} \right)$$
B
$$\left( {1 + {e^{2t}}} \right)/2$$
C
$$\left( {1 - {e^{2t}}} \right)/2$$
D
$$\left( {1 - {e^{ - 2t}}} \right)/2$$
4
GATE CE 1999
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of the function
$$\eqalign{ & f\left( t \right) = k,\,0 < t < c \cr & \,\,\,\,\,\,\,\,\, = 0,\,c < t < \infty ,\,\, \cr} $$
is
A
$$\left( {k/s} \right){e^{ - sc}}$$
B
$$\left( {k/s} \right){e^{sc}}$$
C
$$k\,{e^{ - sc}}$$
D
$$\left( {k/s} \right)\left( {1 - {e^{ - sc}}} \right)$$
GATE CE Subjects
EXAM MAP