1
GATE CE 2009
MCQ (Single Correct Answer)
+2
-0.6
A rectangular concrete beam of width $$120$$ $$mm$$ and depth $$200$$ $$mm$$ is prestressed by pretensioning to a force of $$150$$ $$kN$$ at an eccentricity of $$20$$ $$mm.$$ The cross sectional area of the prestressing steel is $$187.5\,\,m{m^2}.$$ Take modulus of elasticity of steel and concrete as $$2.1 \times {10^5}\,\,MPa$$ and $$3.0 \times {10^4}\,\,MPa$$ respectively. The percentage loss of stress in the prestressing steel due to elastic deformation of concrete is
2
GATE CE 2008
MCQ (Single Correct Answer)
+2
-0.6
A pre-tensioned concrete member of section $$200\,\,mm \times 250\,\,mm$$ contains tendons of area $$500\,\,m{m^2}$$ at the centre of gravity of the section. The prestress in tendons is $$1000\,\,N/m{m^2}.$$. Assuming modular ratio as $$10,$$ the stress $$\left( {N/m{m^2}} \right)$$ in concrete is
3
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
A concrete beam of rectangular cross-section of size $$120$$ $$mm$$ (width) and $$200$$ $$mm$$ (depth) is prestressed by a straight tendon to an effective force of $$150$$ $$kN$$ at an eccentricity of $$20$$ $$mm$$ (below the centroidal axis in the depth direction). The stresses at the top and bottom fibres of the section are
4
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
A concrete beam of rectangular cross section of $$200\,\,mm \times 400\,\,mm$$ is pre-stressed with a force $$400$$ $$kN$$ at eccentricity $$100$$ $$mm.$$ the maximum compressive stress in the concrete is
Questions Asked from Prestressed Concrete (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CE Subjects
Construction Material and Management
Geomatics Engineering Or Surveying
Levelling Traversing Theodolites and Plane Table Surveying Measurement of Area, Volume and Theory of Errors and Survey Adjustment Field Astronomy and Photogrammetric Surveying Basics of GIS, GPS and Remote Sensing Angular Measurements and Compass Survey Basic Concepts Linear Measurements and Chain Survey
Engineering Mechanics
Hydrology
Transportation Engineering
Strength of Materials Or Solid Mechanics
Reinforced Cement Concrete
Steel Structures
Environmental Engineering
Engineering Mathematics
Structural Analysis
Geotechnical Engineering
Origin of Soils Definitions and Properties of Soils Classification of Soils and Clay Mineralogy Effective Stress and Permeability Seepage Analysis Compaction of Soil Compressibility and Consolidation Shear Strength of Soil Stress Distribution of Soil Retaining Wall and Earth Pressure Stability of Slopes Shallow Foundation Pile Foundation Soil Stabilization
Fluid Mechanics and Hydraulic Machines
General Aptitude