1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The two vectors $$\left[ {\matrix{ 1 & 1 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 1 & a & {{a^2}} \cr } } \right]$$ where $$a = - {1 \over 2} + j{{\sqrt 3 } \over 2}$$ and $$j = \sqrt { - 1} $$ are
A
orthonormal
B
orthogonal
C
parallel
D
collinear
2
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The matrix $$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$ is decomposed into a product of lower triangular matrix $$\left[ L \right]$$ and an upper triangular $$\left[ U \right].$$ The properly decomposed $$\left[ L \right]$$ and $$\left[ U \right]$$ matrices respectively are
A
$$\left[ {\matrix{ 1 & 0 \cr 4 & { - 1} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & 1 \cr 0 & { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 \cr 2 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 3} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 0 \cr 4 & 1 \cr } } \right]\,$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & 0 \cr 4 & { - 3} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & {0.5} \cr 0 & 1 \cr } } \right]$$
3
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
Roots of the algebraic equation $${x^3} + {x^2} + x + 1 = 0$$ are
A
$$(1,j,-j)$$
B
$$(1, -1, 1)$$
C
$$(0,0,0)$$
D
$$(-1,j.-j)$$
4
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The function $$f\left( x \right) = 2x - {x^2} + 3\,\,$$ has
A
a maxima at $$x=1$$ and a minima at $$x=5$$
B
a maxima at $$x=1$$ and a minima at $$x=-5$$
C
only a maxima at $$x=1$$
D
only a minima at $$x=$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12