1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Given $$f(t)$$ and $$g(t)$$ as shown below GATE EE 2011 Engineering Mathematics - Transform Theory Question 9 English

The laplace transform of $$g(t)$$ is

A
$${1 \over s}\left[ {{e^{ - 3s}} - {e^{ - 5s}}} \right]$$
B
$${1 \over s}\left[ {{e^{ - 5s}} - {e^{ - 3s}}} \right]$$
C
$${{{e^{ - 3s}}} \over s}\left[ {1 - {e^{ - 2s}}} \right]$$
D
$${1 \over s}\left[ {{e^{ - 5s}} - {e^{ - 3s}}} \right]$$
2
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
A point $$z$$ has been plotted in the complex plane as shown in the figure below GATE EE 2011 Engineering Mathematics - Complex Variable Question 3 English

The plot of the complex number $$w = 1/z$$

A
GATE EE 2011 Engineering Mathematics - Complex Variable Question 3 English Option 1
B
GATE EE 2011 Engineering Mathematics - Complex Variable Question 3 English Option 2
C
GATE EE 2011 Engineering Mathematics - Complex Variable Question 3 English Option 3
D
GATE EE 2011 Engineering Mathematics - Complex Variable Question 3 English Option 4
3
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The two vectors $$\left[ {\matrix{ 1 & 1 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 1 & a & {{a^2}} \cr } } \right]$$ where $$a = - {1 \over 2} + j{{\sqrt 3 } \over 2}$$ and $$j = \sqrt { - 1} $$ are
A
orthonormal
B
orthogonal
C
parallel
D
collinear
4
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The matrix $$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$ is decomposed into a product of lower triangular matrix $$\left[ L \right]$$ and an upper triangular $$\left[ U \right].$$ The properly decomposed $$\left[ L \right]$$ and $$\left[ U \right]$$ matrices respectively are
A
$$\left[ {\matrix{ 1 & 0 \cr 4 & { - 1} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & 1 \cr 0 & { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 \cr 2 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 3} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 0 \cr 4 & 1 \cr } } \right]\,$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & 0 \cr 4 & { - 3} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & {0.5} \cr 0 & 1 \cr } } \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12