1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
A voltage commutated chopper circuit, operated at $$500Hz,$$ is shown below. If the maximum value of load current is $$10A,$$ then the maximum current through the main $$(M)$$ and auxiliary $$(A)$$ thyristors will be
2
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
A three-phase current source inverter used for the speed control of an induction motor is to be realized using MOSFET switches as shown below. Switches $${S_1}$$ to $${S_6}$$ are identical switches.
The proper configuration for realizing switches $${S_1}$$ to $${S_6}$$ is
3
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Two generator units $$G1$$ and $$G2$$ are connected by $$15$$ $$kV$$ line with a bus at the mid-point as shown below
$${G_1} = 250\,\,MVA.\,\,\,15kV,\,\,$$ positive sequence $$X = 25$$% on its own base
$${G_2} = 100\,\,MVA.\,\,\,15kV,\,$$ positive sequence $$X = 10$$% on its own base
$${L_1}$$ and $${L_2}$$ $$= 10$$ $$km,$$ positive sequence $$ X = 0.225$$ $$\,\,\Omega /km$$
$${G_1} = 250\,\,MVA.\,\,\,15kV,\,\,$$ positive sequence $$X = 25$$% on its own base
$${G_2} = 100\,\,MVA.\,\,\,15kV,\,$$ positive sequence $$X = 10$$% on its own base
$${L_1}$$ and $${L_2}$$ $$= 10$$ $$km,$$ positive sequence $$ X = 0.225$$ $$\,\,\Omega /km$$
For the above system, the positive sequence diagram with the p.u values on the $$100$$ $$MVA$$ common
4
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Two generator units $$G1$$ and $$G2$$ are connected by $$15$$ $$kV$$ line with a bus at the mid-point as shown below
$${G_1} = 250\,\,MVA.\,\,\,15kV,\,\,$$ positive sequence $$X = 25$$% on its own base
$${G_2} = 100\,\,MVA.\,\,\,15kV,\,$$ positive sequence $$X = 10$$% on its own base
$${L_1}$$ and $${L_2}$$ $$= 10$$ $$km,$$ positive sequence $$ X = 0.225$$ $$\,\,\Omega /km$$
$${G_1} = 250\,\,MVA.\,\,\,15kV,\,\,$$ positive sequence $$X = 25$$% on its own base
$${G_2} = 100\,\,MVA.\,\,\,15kV,\,$$ positive sequence $$X = 10$$% on its own base
$${L_1}$$ and $${L_2}$$ $$= 10$$ $$km,$$ positive sequence $$ X = 0.225$$ $$\,\,\Omega /km$$
In the above system the three-phase fault $$MVA$$ at the bus $$3$$ is
Paper analysis
Total Questions
Analog Electronics
4
Control Systems
6
Digital Electronics
3
Electric Circuits
5
Electrical and Electronics Measurement
4
Electrical Machines
6
Electromagnetic Fields
1
Engineering Mathematics
10
Power Electronics
7
Power System Analysis
8
Signals and Systems
6
More papers of GATE EE
GATE EE 2024
GATE EE 2023
GATE EE 2022
GATE EE 2021
GATE EE 2020
GATE EE 2019
GATE EE 2018
GATE EE 2017 Set 2
GATE EE 2017 Set 1
GATE EE 2016 Set 2
GATE EE 2016 Set 1
GATE EE 2015 Set 1
GATE EE 2015 Set 2
GATE EE 2014 Set 2
GATE EE 2014 Set 3
GATE EE 2014 Set 1
GATE EE 2013
GATE EE 2012
GATE EE 2011
GATE EE 2010
GATE EE 2009
GATE EE 2008
GATE EE 2007
GATE EE 2006
GATE EE 2005
GATE EE 2004
GATE EE 2003
GATE EE 2002
GATE EE 2001
GATE EE 2000
GATE EE 1999
GATE EE 1998
GATE EE 1997
GATE EE 1996
GATE EE 1995
GATE EE 1994
GATE EE 1993
GATE EE 1992
GATE EE 1991
GATE EE
Papers
2024
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991