1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The matrix $$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$ is decomposed into a product of lower triangular matrix $$\left[ L \right]$$ and an upper triangular $$\left[ U \right].$$ The properly decomposed $$\left[ L \right]$$ and $$\left[ U \right]$$ matrices respectively are
A
$$\left[ {\matrix{ 1 & 0 \cr 4 & { - 1} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & 1 \cr 0 & { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 \cr 2 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 3} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 0 \cr 4 & 1 \cr } } \right]\,$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & 0 \cr 4 & { - 3} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & {0.5} \cr 0 & 1 \cr } } \right]$$
2
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
Roots of the algebraic equation $${x^3} + {x^2} + x + 1 = 0$$ are
A
$$(1,j,-j)$$
B
$$(1, -1, 1)$$
C
$$(0,0,0)$$
D
$$(-1,j.-j)$$
3
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The function $$f\left( x \right) = 2x - {x^2} + 3\,\,$$ has
A
a maxima at $$x=1$$ and a minima at $$x=5$$
B
a maxima at $$x=1$$ and a minima at $$x=-5$$
C
only a maxima at $$x=1$$
D
only a minima at $$x=$$
4
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The two vectors $$\left[ {\matrix{ {1,} & {1,} & {1} \cr } } \right]$$ and $$\left[ {\matrix{ {1,} & {a,} & {{a^2}} \cr } } \right]$$ where $$a = {{ - 1} \over 2} + j{{\sqrt 3 } \over 2}$$ are
A
Orthonormal
B
Orthogonal
C
Parallel
D
Collinear
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12