1
GATE EE 2011
+2
-0.6
The matrix $$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$ is decomposed into a product of lower triangular matrix $$\left[ L \right]$$ and an upper triangular $$\left[ U \right].$$ The properly decomposed $$\left[ L \right]$$ and $$\left[ U \right]$$ matrices respectively are
A
$$\left[ {\matrix{ 1 & 0 \cr 4 & { - 1} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & 1 \cr 0 & { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 \cr 2 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 3} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 0 \cr 4 & 1 \cr } } \right]\,$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & 0 \cr 4 & { - 3} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & {0.5} \cr 0 & 1 \cr } } \right]$$
2
GATE EE 2011
+1
-0.3
Roots of the algebraic equation $${x^3} + {x^2} + x + 1 = 0$$ are
A
$$(1,j,-j)$$
B
$$(1, -1, 1)$$
C
$$(0,0,0)$$
D
$$(-1,j.-j)$$
3
GATE EE 2011
+1
-0.3
The function $$f\left( x \right) = 2x - {x^2} + 3\,\,$$ has
A
a maxima at $$x=1$$ and a minima at $$x=5$$
B
a maxima at $$x=1$$ and a minima at $$x=-5$$
C
only a maxima at $$x=1$$
D
only a minima at $$x=$$
4
GATE EE 2011
+1
-0.3
The two vectors $$\left[ {\matrix{ {1,} & {1,} & {1} \cr } } \right]$$ and $$\left[ {\matrix{ {1,} & {a,} & {{a^2}} \cr } } \right]$$ where $$a = {{ - 1} \over 2} + j{{\sqrt 3 } \over 2}$$ are
A
Orthonormal
B
Orthogonal
C
Parallel
D
Collinear
GATE EE Papers
2024
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Medical
NEET