1
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The two vectors $$\left[ {\matrix{ {1,} & {1,} & {1} \cr } } \right]$$ and $$\left[ {\matrix{ {1,} & {a,} & {{a^2}} \cr } } \right]$$ where $$a = {{ - 1} \over 2} + j{{\sqrt 3 } \over 2}$$ are
A
Orthonormal
B
Orthogonal
C
Parallel
D
Collinear
2
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
With $$K$$ as constant, the possible solution for the first order differential equation $${{dy} \over {dx}} = {e^{ - 3x}}$$ is
A
$${{ - 1} \over 3}{e^{ - 3x}} + K$$
B
$${1 \over 3}\left( { - 1} \right){e^{ 3x}} + K$$
C
$$ - 3{e^{ - 3x}} + K$$
D
$$ - 3{e^{ - x}} + K$$
3
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Solution, the variable $${x_1}$$ and $${x_2}$$ for the following equations is to be obtained by employing the Newton $$-$$ Raphson iteration method
equation (i) $$10\,{x_2}\,\sin \,{x_1} - 0.8 = 0$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$10\,x_2^2\, - 10\,{x_2}\cos \,{x_1} - 0.6 = 0$$
Assuming the initial values $${x_1} = 0.0$$ and $${x_2} = 1.0$$ the Jacobian matrix is
A
$$\left[ {\matrix{ {10} & { - 0.8} \cr 0 & { - 0.6} \cr } } \right]$$
B
$$\left[ {\matrix{ {10} & 0 \cr 0 & {10} \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & { - 0.8} \cr {10} & { - 0.6} \cr } } \right]$$
D
$$\left[ {\matrix{ {10} & 0 \cr {10} & { - 10} \cr } } \right]$$
4
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
Circuit turn-off time of an $$SCR$$ is defined as the time
A
taken by the $$SCR$$ turn of
B
required for the $$SCR$$ current to become zero
C
for which the $$SCR$$ is reverse biased by the commutation circuit
D
for which the $$SCR$$ is reverse biased to reduce its current below the holding current
EXAM MAP