When light wave passes from a medium of refractive index '$$\mu$$' to another medium of refractive index '$$2 \mu$$' the phase change occurs to the light is :
The width of the fringes obtained in the Young's double slit experiment is $$2.6 \mathrm{~mm}$$ when light of wave length $$6000^{\circ} \mathrm{A}$$ is used. If the whole apparatus is immersed in a liquid of refractive index 1.3 the new fringe width will be :
In a single slit diffraction experiment, for slit width '$$\alpha$$' the width of the central maxima is '$$\beta$$'. If we double the slit width then the corresponding width of the central maxima will be:
In Young's double slit interference experiment, using two coherent waves of different amplitudes, the intensities ratio between bright and dark fringes is 3 . Then, the value of the ratio of the amplitudes of the wave that arrive there is