1
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $P$ and $Q$ are two $3 \times 3$ matrices such that $|P Q|=1$ and $|P|=9$, then the determinant of adjoint of the matrix $P$. $\operatorname{adj} 3 Q$ is

A
$9^4$
B
$\frac{1}{9^4}$
C
$9^2$
D
$\frac{1}{9^2}$
2
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $A=\left[\begin{array}{lll}a & 1 & 2 \\ 1 & 2 & b \\ c & 1 & 3\end{array}\right]$ and $\operatorname{adj} A=\left[\begin{array}{ccc}7 & -1 & -5 \\ -3 & 9 & 5 \\ 1 & -3 & 5\end{array}\right]$, then $a^2+b^2+c^2=$

A
10
B
14
C
11
D
29
3
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $3 A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ and $A A^T=I$, then $\frac{a}{b}+\frac{b}{a}=$
A
$\frac{-5}{2}$
B
$\frac{13}{6}$
C
$-\frac{13}{6}$
D
$\frac{5}{2}$
4
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=$
A
$(a+b+c)^3$
B
$2(a+b+c)^3$
C
$3(a+b+c)^3$
D
$(a+b+c)$
AP EAPCET Subjects
EXAM MAP