1
AP EAPCET 2021 - 19th August Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $$f^{\prime \prime}(x)$$ is continuous at $$x=0$$ and $$f^{\prime \prime}(0)=4$$, then find the following value. $$\lim _\limits{x \rightarrow 0} \frac{2 f(x)-3 f(2 x)+f(4 x)}{x^2}$$ is equal to

A
4
B
8
C
12
D
16
2
AP EAPCET 2021 - 19th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$\lim _\limits{z \rightarrow 1} \frac{z^{(1 / 3)}-1}{z^{(1 / 6)}-1}$$ is equal to

A
$$-$$1
B
1
C
2
D
$$-$$2
3
AP EAPCET 2021 - 19th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$f(x)=\left\{\begin{array}{cc} \frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x \neq 0 \\ K \log 2 \log 3, & x=0 \end{array}\right.$$

Find the value of $$k$$ for which the function $$f$$ is continuous.

A
$$\sqrt{2}$$
B
$$24$$
C
$$18 \sqrt{3}$$
D
$$24 \sqrt{2}$$
4
AP EAPCET 2021 - 19th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

If the function $$f(x)$$, defined below is continuous in the interval $$[0, \pi]$$, then $$f(x)=\left\{\begin{array}{cc}x+a \sqrt{2}(\sin x) & , \quad 0 \leq x < \frac{\pi}{4} \\ 2 x(\cot x)+b, & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a(\cos 2 x)-b(\sin x), & \frac{\pi}{2} < x \leq \pi\end{array}\right.$$

A
$$a=\frac{\pi}{6}, b=\frac{\pi}{12}$$
B
$$a=\frac{-\pi}{6}, b=\frac{\pi}{12}$$
C
$$a=\frac{-\pi}{6}, b=\frac{-\pi}{12}$$
D
$$a=\frac{\pi}{6}, b=\frac{-\pi}{12}$$
AP EAPCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12