1
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Assertion (A) : If $A=10^{\circ}, B=16^{\circ}$ and $C=19^{\circ}$, then $\tan 2 A \tan 2 B+\tan 2 B \tan 2 C+\tan 2 C \tan 2 A=1$

Reason (R) : If $A+B+C=180^{\circ}, \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$

$$ =\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2} $$

Which of the following is correct ?

A
Both $(A)$ and $(R)$ are true and $(R)$ is the correct explanation of (A)
B
Both $(A)$ and $(R)$ are true and $(R)$ is not correct explanationot (A)
C
(A) is true, ( $R$ ) is false
D
(A) is false, (R) is true.
2
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha$ is in the 3rd quadrant, $\beta$ is in the 2nd quadrant such that $\tan \alpha=\frac{1}{7}, \sin \beta=\frac{1}{\sqrt{10}}$, then $\sin (2 \alpha+\beta)=$
A
$\frac{3 \times \sqrt{10}}{25}$
B
$\frac{3}{\sqrt{10}}$
C
$\frac{3}{25 \sqrt{10}}$
D
$\frac{\sqrt{10}}{3 \times 25}$
3
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the period of the function $f(x)=\frac{\tan 5 x \cos 3 x}{\sin 6 x}$ is $\alpha$, then $f\left(\frac{\alpha}{8}\right)=$
A
$\frac{1}{2}$
B
-1
C
$\frac{1}{\sqrt{2}}$
D
$-\frac{1}{\sqrt{2}}$
4
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\sin x+\sin y=\alpha, \cos x+\cos y+\beta$, then $\operatorname{cosec}(x+y)=$
A
$\frac{\beta^2-\alpha^2}{\beta^2+\alpha^2}$
B
$\frac{2 \beta \alpha}{\beta^2-\alpha^2}$
C
$\frac{\beta^2+\alpha^2}{2 \beta \alpha}$
D
$\frac{2 a \beta}{\beta^2+\alpha^2}$
AP EAPCET Subjects
EXAM MAP