1
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $P+Q+P=\frac{\pi}{4}$, then $\cos \left(\frac{\pi}{8}-P\right)+\cos \left(\frac{\pi}{8}-Q\right)+\cos$ $\left(\frac{\pi}{8}-R\right)=$
A
$4 \cos \frac{P}{2} \cos \frac{Q}{2}, \cos \frac{R}{2}-\cos \frac{\pi}{8}$
B
$4 \cos \frac{P}{2} \cos \frac{Q}{2} \cdot \sin \frac{R}{2}+\cos \frac{\pi}{8}$
C
$4 \sin \frac{P}{2} \cos \frac{Q}{2}, \sin \frac{R}{2}-\cos \frac{\pi}{8}$
D
$4 \sin \frac{P}{2} \cos \frac{Q}{2}, \sin \frac{R}{2}-\cos \frac{\pi}{8}$
2
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\theta$ is an acute angle, $\cosh x=K$ and $\sinh x=\tan \theta$, then $\sin \theta=$
A
$\frac{k}{k^2+1}$
B
$\frac{k^2+1}{k^2+2}$
C
$\frac{\sqrt{k^2-1}}{k}$
D
$\frac{\sqrt{k^2-1}}{\sqrt{k^2+1}}$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\sec \theta+\tan \theta=\frac{1}{3}$, then the quadrant in which $2 \theta$ lies is
A
1st quadrant
B
2nd quadrant
C
3rd quadrant
D
4th quadrant
4
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $540^{\circ} < A < 630^{\circ}$ and $|\cos A|=\frac{5}{13}$, then $\tan \frac{A}{2} \tan A=$
A
$\frac{18}{5}$
B
$\frac{8}{5}$
C
$-\frac{8}{5}$
D
$-\frac{18}{5}$
AP EAPCET Subjects
EXAM MAP