An ideal gas changes its state from $$\mathrm{A}$$ to $$\mathrm{C}$$ in two different paths $$\mathrm{ABC}$$ and $$\mathrm{AC}$$. The internal energy of the gas at state $$\mathrm{C}$$ is $$20 \mathrm{~J}$$ and at state $$\mathrm{B}$$ is $$10 \mathrm{~J}$$. Heat supplied to the gas to go from $$\mathrm{B} \rightarrow \mathrm{C}$$ is
If pressure of an ideal gas is increased by keeping temperature constant the kinetic energy will
A cubical box of side $$2 \mathrm{~m}$$ contains helium gas. It was observed that in a time of 1 second, an atom travelling with the root-mean-square speed parallel to one of the edges of the cube, made 250 hits with one of the walls, without any collision with other atoms. The average kinetic energy of the helium gas is Take $$R=\frac{25}{3} \mathrm{~J} / \mathrm{mol}-\mathrm{K}$$ and $$\mathrm{kB}=1.38 \times 10^{-23} \mathrm{JK}{ }^{-1}$$
A glass of hot water cools from $$90^{\circ} \mathrm{C}$$ to $$70^{\circ} \mathrm{C}$$ in 3 minutes when the temperature of surroundings is $$20^{\circ} \mathrm{C}$$. What is the time taken by the glass of hot water to cool from $$60^{\circ} \mathrm{C}$$ to $$40^{\circ} \mathrm{C}$$ if the surrounding temperature remains the same at $$20^{\circ} \mathrm{C}$$ ?