1
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ are two vectors and $\mathbf{c}$ is a unit vectors lying in the plane of $\mathbf{a}$ and $\mathbf{b}$. If $\mathbf{c}$ is perpendicular to $\mathbf{b}$, then $\mathbf{c}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=$
A
0
B
5
C
$\frac{1}{\sqrt{21}}$
D
$\frac{2}{\sqrt{21}}$
2
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \mathbf{c}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$. $\mathbf{d}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ are four vector, then $(\mathbf{a} \times \mathbf{c}) \times(\mathbf{b} \times \mathbf{d})=$
A
$2 \hat{\mathbf{i}}+19 \hat{\mathbf{j}}-11 \hat{\mathbf{k}}$
B
$-8 \hat{\mathbf{i}}+19 \hat{\mathbf{j}}-29 \hat{\mathbf{k}}$
C
$2 \mathbf{i}+\mathbf{j}-11 \mathbf{k}$
D
$-8 \hat{\mathbf{i}}+\hat{\mathbf{j}}-29 \hat{\mathbf{k}}$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The angle between the diagonals of the parallelogram whose adjacent sides are $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is
A
$\cos ^{-1}\left(\frac{7}{\sqrt{69}}\right)$
B
$\cos ^{-1}\left(\frac{1}{7 \sqrt{69}}\right)$
C
$\cos ^{-1}\left(\frac{1}{7}\right)$
D
$\cos ^{-1}\left(\frac{31}{7 \sqrt{69}}\right)$
4
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the points having the position vectors $-i+4 j-4 k_{\text {, }}$, $3 i+2 j-5 k,-3 i+8 j-5 k$ and $-3 i+2 j+\lambda k$ are coplanar, then $\lambda=$
A
1
B
2
C
-2
D
-3
AP EAPCET Subjects
EXAM MAP