1
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}},-3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ are the position vectors of three points, $A, B, C$ respectively, then $A, B, C$
A
are collinear point
B
form an isosceles triangle which is not equilateral
C
form an equilateral trianglé
D
form a scalene triangle
2
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are position vectors of 4 points such that $2 a+3 b+5 c-10 d=0$, then the ratio in which the line joining $c$ and $d$ divides the line segment joining $a$ and $\mathbf{b}$ is
A
$2: 3$
B
$-1: 2$
C
$2: 1$
D
$3: 2$
3
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are 3 vectors such that $|\mathbf{a}|=5,|\mathbf{b}|=8,|\mathbf{c}|=11$ and $\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}$, then the angle between the vectors $\mathbf{a}$ and $\mathbf{b}$ is
A
$\cos ^{-1} \frac{2}{5}$
B
$\cos ^{-1} \frac{10}{11}$
C
$\cos ^{-1} \frac{41}{55}$
D
$\frac{\pi}{3}$
4
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

    $\mathbf{a}=\alpha \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad \mathbf{b}=\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\mathbf{c}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ ar linearly dependent vectors and magnitude of $ \alpha $$ \sqrt{14} $${\text {}}{ }^{}$ If $\alpha, \beta$ are integers, then $\alpha+\beta=$

A
3
B
-3
C
5
D
-5
AP EAPCET Subjects
EXAM MAP