1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $[r]$ denote the largest integer not exceeditio $r$ and the roots of the equation $3 x^2+6 x+5+\alpha\left(x^2+2 x+2\right)=0$ are complex number when ever $\alpha>L$ and $\alpha
A
$L$
B
$M$
C
$L+M$
D
$M-L$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
For any real value of $x$. If $\frac{11 x^2+12 x+6}{x^2+4 x+2} \notin(a, b)$, then the value $x$ for which $\frac{11 x^2+12 x+6}{x^2+4 x+2}=b-a+3$ is
A
$\frac{3}{4}$
B
$\frac{3}{2}$
C
2
D
$-\frac{1}{2}$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the roots of $\sqrt{\frac{1-y}{y}}+\sqrt{\frac{y}{1-y}}=\frac{5}{2}$ are $\alpha$ and $\beta(\beta>\alpha)$ and the equation $(\alpha+\beta) x^4-25 \alpha \beta x^2+(\gamma+\beta-\alpha)=0$ has real roots, then a possible value of $\gamma$ is
A
$\frac{1}{2}$
B
4
C
$2 \pi$
D
$\sqrt{e+13}$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha$ and $\beta$ are two double roots of $x^2+3(a+3) x-9 a=0$ for different values of $a(\alpha>\beta)$, then the minimum value of $x^2+\alpha x-\beta=0$ is
A
$\frac{69}{4}$
B
$-\frac{69}{4}$
C
$-\frac{35}{4}$
D
$\frac{35}{4}$
AP EAPCET Subjects
EXAM MAP